【題目】如圖,大海中有A和B兩個島嶼,為測量它們之間的距離,在海岸線PQ上點E處測得∠AEP=60°,∠BEQ=45°;在點F處測得∠AFP=45°,∠BFQ=90°,EF=2km.
(1)判斷AB、AE的數量關系,并說明理由;
(2)求兩個島嶼A和B之間的距離(結果保留根號).
【答案】(1)AB=AE,理由見解析;(2)()km.
【解析】
試題(1)根據SAS即可證明△AEF≌△ABF,得到AB=AE;
(2)作AH⊥PQ,垂足為H.設AE=x,在直角△AHF,直角△AEP中,利用三角函數表示出HE與HF,從而可得到關于x的方程,解方程即可得解.
試題解析:(1)相等.
∵∠BEQ=30°,∠BFQ=60°,
∴∠EBF=∠BEQ=30°,
∴EF=BF,
又∵∠AFP=60°,
∴∠BFA=60°.
在△AEF與△ABF中,
∵,
∴△AEF≌△ABF(SAS),
∴AB=AE;
(2)過點A作AH⊥PQ,垂足為H.
設AE=xkm,
則AH=xsin60°km,HE=xcos60°km,
∴HF=HE+EF=(xcos60°+2)km,
Rt△AHF中,AH=HFtan45°,
∴AH=HF,
即:xsin60°= xcos60°+2
解得:x=,
即AB=AE=()km.
答:兩個島嶼A與B之間的距離為()km.
考點: 解直角三角形的應用-方向角問題.
科目:初中數學 來源: 題型:
【題目】某校團委計劃在元且期間組織優秀團員到敬老院去服務,現選出了10名優秀團員參加服務,其中男生6人,女生4人.
若從這10人中隨機選一人當隊長,求選中女生當隊長的概率;
現決定從甲、乙中選一人當隊長,他們準備以游戲的方式決定由誰擔任,游戲規則如下:將四張牌面數字分別為2,3,4,5的撲克牌洗勻后,數字朝下放于桌面,從中任取2張,若牌面數字之和為偶數,則選甲為隊長;否則,選乙為隊長
試問這個游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】每年的6月5日為世界環保日,為了提倡低碳環保,某公司決定購買10臺節省能源的新設備,現有甲、乙兩種型號的設備可供選購. 經調查:購買3臺甲型設備比購買2臺乙型設備多花16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.
(1)求甲、乙兩種型號設備的價格;
(2)該公司經預算決定購買節省能源的新設備的資金不超過110萬元,你認為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設備的產量為240噸/月,乙型設備的產量為180噸/月.若每月要求總產量不低于2040噸,為了節約資金,請你為該公司設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D,E在線段BC上,△ADE是等邊三角形,且∠BAC=120°
(1)求證:△ABD∽△CAE;
(2)若BD=2,CE=8,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1)。
(1)以O點為位似中心在y軸的左側將△OBC放大到兩倍畫出圖形。
(2)寫出B、C兩點的對應點B、C的坐標;
(3)如果△OBC內部一點M的坐標為(x,y),寫出M的對應點M的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某課桌生產廠家研究發現,傾斜12°~24°的桌面有利于學生保持軀體自然姿勢.根據這一研究,廠家決定將水平桌面做成可調節角度的桌面.新桌面的設計圖如圖1,AB可繞點A旋轉,在點C處安裝一根可旋轉的支撐臂CD,AC=30 cm.
(1)如圖2,當∠BAC=24°時,CD⊥AB,求支撐臂CD的長;
(2)如圖3,當∠BAC=12°時,求AD的長.(結果保留根號)
(參考數據:sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨若移動終端設備的升級換代,手機已經成為我們生活中不可缺少的一部分,為了解中學生在假期使用手機的情況(選項:A .和同學親友聊天;B.學習;C.購物;D.游戲;E.其它),端午節后某中學在全校范圍內隨機抽取了若干名學生進行調査,得到如下圖表(部分信息未給出):
根據以上信息解答下列問題:
(1)這次被調查的學生有多少人?
(2)求表中 的值,并補全條形統計圖;
(3)若該中學約有名學生,估計全校學生中利用手機購物或玩游戲的共有多少人?
并根據以上調査結果,就中學生如何合理使用手機給出你的一條建議.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D在半圓O上,半徑OB=2,AD=10,點C在弧BD上移動,連接AC,H是AC上一點,∠DHC=90°,連接BH,點C在移動的過程中,BH的最小值是( )
A. 5B. 6C. 7D. 8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=9O°,CD是斜邊AB上的中線,過點A作AE⊥CD,AE分別與CD、CB交于H、E兩點,且AH=2CH,若AB=2,則BE的值為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com