精英家教網 > 初中數學 > 題目詳情

【題目】如圖,P是等邊三角形ABC內的一點,且PA6,PB8PC10

1)尺規作圖:作出將△PAC繞點A逆時針旋轉60°后所得到的△PAB(不要求寫作法,但需保留作圖痕跡).

2)求點P與點P′之間的距離及∠APB的度數.

【答案】1)詳見解析;(2PP′=6,∠APB150°.

【解析】

1)作等邊三角形APP′,連接PB,則△PAB是所求作的三角形;

2)根據旋轉的性質得到∠PAP′=60°,PAPA6PBPC10,利用等邊三角形的判定方法得到△PAP′為等邊三角形,再根據等邊三角形的性質有PP′=PA6,∠PPA60°,由于PP2+PB2PB2,根據勾股定理的逆定理得到△BPP′為直角三角形,且∠BPP′=90°,則∠APB=∠PPB+BPP′=60°+90°=150°.

解:(1)將△PAC繞點A逆時針旋轉60°后所得到的△P′AB如圖:

2)如圖,∵△PAC繞點A逆時針旋轉60°后,得到△P′AB,

∴∠PAP′60°,PAP′A6,P′BPC10,

∴△PAP′為等邊三角形,

∴PP′PA6,∠P′PA60°,

△BPP′中,P′B10,PB8PP′6,

∵62+82102,

∴PP′2+PB2P′B2

∴△BPP′為直角三角形,且∠BPP′90°,

∴∠APB∠P′PB+∠BPP′60°+90°150°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現隨機從中摸出10枚記下顏色后放回,這樣連續做了10次,記錄了如下的數據:

次數

1

2

3

4

5

6

7

8

9

10

黑棋數

1

3

0

2

3

4

2

1

1

3

根據以上數據,估算袋中的白棋子數量為( )

A. 60 B. 50 C. 40 D. 30

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市某化工材料經銷商購進一種化工材料若干千克,成本為每千克30元,物價部門規定其銷售單價不低于成本價且不高于成本價的2倍,經試銷發現,日銷售量(千克)與銷售單價(元)符合一次函數關系,如圖所示.

1)求之間的函數關系式,并寫出自變量的取值范圍;

2)若在銷售過程中每天還要支付其他費用500元,當銷售單價為多少時,該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】要修建一個圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個噴頭,使噴出的拋物線形水柱在與水池中心的水平距離為1m處達到最高,高度為3m,水柱落地處離中心3m

1)在給定的坐標系中畫出示意圖;

2)求出水管的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖C是線段BD上一點,分別以BCCD為邊在BD同側作等邊ABC和等邊CDE,ADCEF,BEACG,則圖中可通過旋轉而相互得到的三角形對數有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四位同學在研究函數y=x2+bx+c(b,c是常數)時,甲發現當x=1時,函數有最小值;乙發現﹣1是方程x2+bx+c=0的一個根;丙發現函數的最小值為3;丁發現當x=2時,y=4,已知這四位同學中只有一位發現的結論是錯誤的,則該同學是( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P是等腰RtABC外一點,把線段BP繞點B順時針旋轉90°得到線段BP',已知∠AP'B135°P'AP'C13,則P'APB_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】國慶期間某旅游點一家商鋪銷售一批成本為每件50元的商品,規定銷售單價不低于成本價,又不高于每件70,銷售量y()與銷售單價x()的關系可以近似的看作一次函數(如圖).

(1)請直接寫出y關于x之間的關系式

(2)設該商鋪銷售這批商品獲得的總利潤(總利潤=總銷售額一總成本)P元,求Px之間的函數關系式,并寫出自變量x的取值范圍;根據題意判斷:x取何值時,P的值最大?最大值是多少?

(3)若該商鋪要保證銷售這批商品的利潤不能低于400,求銷售單價x()的取值范圍是 .(可借助二次函數的圖象直接寫出答案)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视