【題目】如圖,點A,B,C,D在同一條直線上,點E,F分別在直線AD的兩側,且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時,四邊形BFCE是菱形.
【答案】(1)證明見試題解析;(2)4.
【解析】試題分析:(1)由AE=DF,∠A=∠D,AB=DC,易證得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四邊形BFCE是平行四邊形;
(2)當四邊形BFCE是菱形時,BE=CE,根據菱形的性質即可得到結果.
試題解析:(1)∵AB=DC,∴AC=DB,
在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四邊形BFCE是平行四邊形;
(2)當四邊形BFCE是菱形時,BE=CE,∵AD=10,DC=3,AB=CD=3,
∴BC=10﹣3﹣3=4,∵∠EBD=60°,∴BE=BC=4,
∴當BE="4" 時,四邊形BFCE是菱形,
故答案為:4.
科目:初中數學 來源: 題型:
【題目】如圖,現有一個均勻的轉盤被平均分成6等份,分別標有數字2、3、4、5、6、7這六個數字,轉動轉盤,當轉盤停止時,指針指向的數字即為轉出的數字.
求:
(1)轉動轉盤,轉出的數字大于3的概率是多少;
(2)現有兩張分別寫有3和4的卡片,要隨機轉動轉盤,轉盤停止后記下轉出的數字,與兩張卡片上的數字分別作為三條線段的長度.
①這三條線段能構成三角形的概率是多少?
②這三條線段能構成等腰三角形的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過四邊形ABCD的四個頂點分別作對角線AC,BD的平行線,所圍成的四邊形EFGH顯然是平行四邊形.
(1)當四邊形ABCD分別是菱形、矩形、平行四邊形時,相應的四邊形EFGH一定是“平行四邊形、菱形、矩形、正方形”中的哪一種?請將你的結論填入下表:
(2)反之,當用上述方法所圍成的平行四邊形EFGH分別是矩形、菱形時,相應的原四邊形ABCD必須滿足怎樣的條件?
當 時,四邊形EFGH是矩形;當 時四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數y=x的圖象上,從左向右第3個正方形中的一個頂點A的坐標為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn,則Sn的值為__.(用含n的代數式表示,n為正整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】北京時間2011年3月11日,日本近海發生9.0級強烈地震.本次地震導致地球當天自轉快了0.0000016秒.這里的0.0000016秒請你用科學記數法表示為秒.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD是正方形,G是BC上(除端點外)的任意一點,DE⊥AG于點E,BF∥DE,交AG于點F.下列結論不一定成立的是【 】
A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標都在格點上,且△A1B1C1與△ABC關于原點O成中心對稱,C點坐標為(-2,1)。
(1)請直接寫出A1的坐標 ;并畫出△A1B1C1.
(2)P(a,b)是△ABC的AC邊上一點,將△ABC平移后點P的對稱點P'(a+2,b﹣6),請畫出平移后的△A2B2C2.
(3)若△A1B1C1和△A2B2C2關于某一點成中心對稱,則對稱中心的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為計算簡便,把(-2.4)-(-4.7)-(+0.5)+(+3.4)+(-3.5)寫成省略加號的和的形式,并按要求交換加數的位置正確的是( ).
A. -2.4+3.4-4.7-0.5-3.5
B. -2.4+3.4+4.7+0.5-3.5
C. -2.4+3.4+4.7-0.5-3.5
D. -2.4+3.4+4.7-0.5+3.5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com