【題目】公元前6世紀古希臘的畢達哥拉斯學派有一種觀點,即“萬物皆數”,一切量都可以用整數或整數比(分數)表示,后來,當這一學派中的希帕索斯發現,邊長為1的正方形的對角線的長度不能用整數或整數的比表示時,畢達哥拉斯學派感到驚恐不安,由此,引發了第一次數學危機,這兒“不能用整數或整數的比表示的數”指的是( )
A.有理數B.無理數C.合數D.質數
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系內,小正方形網格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C(0,0)
⑴畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;
⑵畫出將△ABC繞原點O順時針方向旋轉90°得到△A2B2O;
⑶在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設中學生體質健康綜合評定成績為x分,滿分為100分,規定:85≤x≤100為A級,75≤x≤85為B級,60≤x≤75為C級,x<60為D級.現隨機抽取福海中學部分學生的綜合評定成績,整理繪制成如下兩幅不完整的統計圖,請根據圖中的信息,解答下列問題:
(1)在這次調查中,一共抽取了 名學生,α= %;
(2)補全條形統計圖;
(3)扇形統計圖中C級對應的圓心角為 度;
(4)若該校共有2000名學生,請你估計該校D級學生有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,AC=BC,分別以BC和AC為直角邊向上作等腰直角三角形△BCD和△ACE,AE與BD相交于點F,連接CF并延長交AB于點G.求證:CG垂直平分AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(9分)已知:如圖,平行四邊形ABCD中,O是CD的中點,連接AO并延長,交BC的延長線于點E.
(1)(4分)求證:△AOD≌△EOC;
(2)(5分)連接AC,DE,當∠B=∠AEB= °時,四邊形ACED是正方形?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com