【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( )
A.12
B.24
C.12
D.16
【答案】D
【解析】解:在矩形ABCD中,
∵AD∥BC,
∴∠DEF=∠EFB=60°,
∵把矩形ABCD沿EF翻折點B恰好落在AD邊的B′處,
∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,
在△EFB′中,
∵∠DEF=∠EFB=∠EB′F=60°
∴△EFB′是等邊三角形,
Rt△A′EB′中,
∵∠A′B′E=90°﹣60°=30°,
∴B′E=2A′E,而A′E=2,
∴B′E=4,
∴A′B′=2 ,即AB=2
,
∵AE=2,DE=6,
∴AD=AE+DE=2+6=8,
∴矩形ABCD的面積=ABAD=2 ×8=16
.
故答案為:16 .
根據平行線的性質和折疊的性質易證得△EFB′是等邊三角形,繼而可得△A′B′E中,B′E=2A′E,則可求得B′E的長,然后由勾股定理求得A′B′的長,繼而求得答案.
科目:初中數學 來源: 題型:
【題目】隨著新農村的建設和舊城的改造,我們的家園越來越美麗,小明家附近廣場中央新修了一個圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達到最高,水柱落地處離池中心
米.
(1)請你建立適當的直角坐標系,并求出水柱拋物線的函數解析式;
(2)求出水柱的最大高度是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程解應用題:
某玩具廠生產一種玩具,按照控制固定成本降價促銷的原則,使生產的玩具能夠及時售出,據市場調查:每個玩具按元銷售時,每天可銷售
個;若銷售單價每降低元,每天可多售出
個.已知每個玩具的固定成本為
元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤
元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形的邊長為
,點
分別是線段
上的動點,連接
并延長,交邊
于
,過
作
,垂足為
,交邊
于點
.
(1)如圖1,若點與點
重合,求證:
;
(2)如圖2,若點從點
出發,以
的速度沿
向點
運動,同時點
從點
出發,以
的速度沿
向點
運動,運動時間為
.
①設,求
關于t的函數表達式;
②當時,連接
,求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店經銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調查發現,這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關系:y=-x+60(30≤x≤60).
設這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數解析式;
(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學興趣小組研究某型號冷柜溫度的變化情況,發現該冷柜的工作過程是:當溫度達到設定溫度時,制冷停止,此后冷柜中的溫度開始逐漸上升,當上升到
時,制冷開始,溫度開始逐漸下降,當冷柜自動制冷至
時,制冷再次停止,……,按照以上方式循環進行.
同學們記錄了44內15個時間點冷柜中的溫度
隨時間
的變化情況,制成下表:
(1)通過分析發現,冷柜中的溫度是時間
的函數.
①當時,寫出一個符合表中數據的函數解析式 ;
②當時,寫出一個符合表中數據的函數解析式 ;
(2)的值為 ;
(3)如圖,在直角坐標系中,已描出了上表中部分數據對應的點,請描出剩余對應的點,并畫出時溫度
隨時間
變化的函數圖象.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com