精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知AB是⊙O的直徑,⊙ORtACD的兩直角邊分別交于點E、F,點F是弧BE的中點,∠C=90°,連接AF

1)求證:直線DF是⊙O的切線.

2)若BD=1OB=2,求tanAFC的值.

【答案】(1)詳見解析;(2)

【解析】

1)連結OF,BE,根得到BECD,根據平行線的性質得到∠OFD=90°,根據切線的判定定理證明;
2)由OFAC可得比例線段求出AC長,再由勾股定理可求得DC長,則能求出CF長,tanAFC的值可求.

1)證明:連結OFBE,

AB是⊙O的直徑,

∴∠AEB=90°,

∵∠C=90°,

∴∠AEB=ACD,

BECD

∵點F是弧BE的中點,

OFBE,

OFCD,

OF為半徑,

∴直線DF是⊙O的切線;

2)解:∵∠C=OFD=90°,

ACOF,

∴△OFD∽△ACD,

,

BD=1,OB=2,

OD=3,AD=5,

,

CD===

,

=

tanAFC=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線yx+b與雙曲線yk為常數,k0)在第一象限內交于點A1,2),且與x軸、y軸分別交于B,C兩點.

1)求直線和雙曲線的解析式;

2)點Px軸上,且△BCP的面積等于2,求P點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知菱形ABCD的面積為8,對角線AC長為4,MBC的中點,若P為對角線AC上一動點,則PBPM之和的最小值為( 。

A. B. 2C. 2D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,△ABC是等邊三角形,點D是平面內一點,連接CD,將線段CDC順時針旋轉60°得到線段CE,連接BE,AD,并延長ADBE于點P

1)當點D在圖1所在的位置時

求證:△ADC≌△BEC;

求∠APB的度數;

求證:PD+PEPC;

2)如圖2,當△ABC邊長為4,AD2時,請直接寫出線段CE的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖(1),已知正方形ABCD在直線MN的上方BC在直線MN上,EBC上一點,以AE為邊在直線MN的上方作正方形AEFG

1)連接GD,求證:ADG≌△ABE

2)連接FC,觀察并直接寫出∠FCN的度數(不要寫出解答過程)

3)如圖(2),將圖中正方形ABCD改為矩形ABCDAB6,BC8,E是線段BC上一動點(不含端點B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點G恰好落在射線CD上.判斷當點EBC運動時,∠FCN的大小是否總保持不變,若∠FCN的大小不變,請求出tanFCN的值.若∠FCN的大小發生改變,請舉例說明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列圖是由5個相同的小正方體組成的幾何體,其主視圖和左視圖相同的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數關系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標;

3)在對稱軸上是否存在一點M,使ANM的周長最小.若存在,請求出M點的坐標和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線經過點.是線段上一動點(點不與、重合),過點軸的垂線交拋物線于點,交線段于點.過點,垂足為點.

[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/18/2206393160556544/2207286529548288/STEM/a9696d0cbdac438aa94c80bfc838afd4.png]

1)求該拋物線的解析式;

2)試求線段的長關于點的橫坐標的函數解析式,并求出的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算

1(xy)22x(xy);     2(a1)(a1)(a1)2;

3)先化簡,再求值:

(x2y)(x2y)(2x3y4x2y2)÷2xy,其中x=3,.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视