【題目】如圖,已知AB是⊙O的直徑,⊙O與Rt△ACD的兩直角邊分別交于點E、F,點F是弧BE的中點,∠C=90°,連接AF.
(1)求證:直線DF是⊙O的切線.
(2)若BD=1,OB=2,求tan∠AFC的值.
【答案】(1)詳見解析;(2)
【解析】
(1)連結OF,BE,根得到BE∥CD,根據平行線的性質得到∠OFD=90°,根據切線的判定定理證明;
(2)由OF∥AC可得比例線段求出AC長,再由勾股定理可求得DC長,則能求出CF長,tan∠AFC的值可求.
(1)證明:連結OF,BE,
∵AB是⊙O的直徑,
∴∠AEB=90°,
∵∠C=90°,
∴∠AEB=∠ACD,
∴BE∥CD,
∵點F是弧BE的中點,
∴OF⊥BE,
∴OF⊥CD,
∵OF為半徑,
∴直線DF是⊙O的切線;
(2)解:∵∠C=∠OFD=90°,
∴AC∥OF,
∴△OFD∽△ACD,
∴,
∵BD=1,OB=2,
∴OD=3,AD=5,
∴,
∴CD==
=
,
∵,
∴=
,
∴tan∠AFC=.
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+b與雙曲線y=(k為常數,k≠0)在第一象限內交于點A(1,2),且與x軸、y軸分別交于B,C兩點.
(1)求直線和雙曲線的解析式;
(2)點P在x軸上,且△BCP的面積等于2,求P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知菱形ABCD的面積為8,對角線AC長為4
,M為BC的中點,若P為對角線AC上一動點,則PB與PM之和的最小值為( 。
A. B. 2
C. 2D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,點D是平面內一點,連接CD,將線段CD繞C順時針旋轉60°得到線段CE,連接BE,AD,并延長AD交BE于點P.
(1)當點D在圖1所在的位置時
①求證:△ADC≌△BEC;
②求∠APB的度數;
③求證:PD+PE=PC;
(2)如圖2,當△ABC邊長為4,AD=2時,請直接寫出線段CE的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),已知正方形ABCD在直線MN的上方BC在直線MN上,E是BC上一點,以AE為邊在直線MN的上方作正方形AEFG.
(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并直接寫出∠FCN的度數(不要寫出解答過程)
(3)如圖(2),將圖中正方形ABCD改為矩形ABCD,AB=6,BC=8,E是線段BC上一動點(不含端點B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點G恰好落在射線CD上.判斷當點E由B向C運動時,∠FCN的大小是否總保持不變,若∠FCN的大小不變,請求出tan∠FCN的值.若∠FCN的大小發生改變,請舉例說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數關系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標;
(3)在對稱軸上是否存在一點M,使△ANM的周長最小.若存在,請求出M點的坐標和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經過點
、
.
是線段
上一動點(點
不與
、
重合),過點
作
軸的垂線交拋物線于點
,交線段
于點
.過點
作
,垂足為點
.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/18/2206393160556544/2207286529548288/STEM/a9696d0cbdac438aa94c80bfc838afd4.png]
(1)求該拋物線的解析式;
(2)試求線段的長
關于點
的橫坐標
的函數解析式,并求出
的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算
(1)(x+y)2-2x(x+y); (2)(a+1)(a-1)-(a-1)2;
(3)先化簡,再求值:
(x+2y)(x-2y)-(2x3y-4x2y2)÷2xy,其中x=-3,.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com