【題目】綜合題:探索發現規律拓展應用題
(1)如圖①,∠CEF=90°,點B在射線EF上,AB∥CD,若∠ABE=130°,求∠C的度數;
(2)如圖②,把“∠CEF=90°”改為“∠CEF=120°”,點B在射線EF上,AB∥CD.猜想∠ABE與∠C的數量關系,并說明理由.
【答案】
(1)解:如圖①,
過E作EK∥AB,則∠ABE+∠1=180°,
∴∠1=180°﹣∠ABE=50°,
∵∠CEF=90°,
∴∠2=90°﹣∠1=40°,
∵AB∥CD,EK∥AB,
∴EK∥CD,
∴∠C=∠2=40°
(2)解:∠ABE﹣∠C=60°,
理由:如圖②,
過E作EK∥AB,則∠ABE+∠1=180°,
∴∠1=180°﹣∠ABE,
∵AB∥CD,EK∥AB,
∴EK∥CD,
∴∠C=∠2,
∵∠CEF=∠1+∠2=120°,即180°﹣∠ABE+∠C=120°,
∴∠ABE﹣∠C=180°﹣120°=60°
【解析】(1)由小題1發現隱藏的規律:平行線間出現折線時,過折點作平行線,構造同旁內角和內錯角;(2)類比運用此規律可以解決小題2.
【考點精析】根據題目的已知條件,利用平行線的性質的相關知識可以得到問題的答案,需要掌握兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補.
科目:初中數學 來源: 題型:
【題目】某車隊要把4000噸貨物運到雅安地震災區(方案定后,每天的運量不變)。
(1)從運輸開始,每天運輸的貨物噸數n(單位:噸)與運輸時間t(單位:天)之間有怎樣的函數關系式?
(2)因地震,到災區的道路受阻,實際每天比原計劃少運20%,則推遲1天完成任務,求原計劃完成任務的天數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖△ABC,AC=BC,∠ACB=90°,AD為角平分線,延長AD交BF于E,E為BF中點,下列結論錯誤的是( )
A.AD=BF
B.CF=CD
C.AC+CD=AB
D.BE=CF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以點B(0,8)為端點的射線BG∥x軸,點A是射線BG上的一個動點(點A與點B不重合).在射線AG上取AD=OB,作線段AD的垂直平分線,垂足為E,且與x軸交于點F,過點A作AC⊥OA,交射線EF于點C.連接OC、CD,設點A的橫坐標為t.
(1)用含t的式子表示點E的坐標為_______;
(2)當t為何值時,∠OCD=180°?
(3)當點C與點F不重合時,設△OCF的面積為S,求S與t之間的函數解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.
(1)求證:四邊形ABCD是平行四邊形;
(2)若點E是AC的中點,判斷BE與AC的位置關系,并說明理由;
(3)若△ABE是等邊三角形,AD=,求對角線AC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com