【題目】如圖,四邊形ABCD是平行四邊形,E、F是對角線AC上的兩點,∠1=∠2.
(1)求證:AE=CF;
(2)求證:四邊形EBFD是平行四邊形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】(1)通過證明△ADE≌△CBF,由全等三角的對應邊相等證得AE=CF。
(2)根據平行四邊形的判定定理:對邊平行且相等的四邊形是平行四邊形證得結論。
證明:(1)如圖:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,∠3=∠4。
∵∠1=∠3+∠5,∠2=∠4+∠6,
∴∠1=∠2。
∴∠5=∠6。
∵在△ADE與△CBF中,∠3=∠4,AD=BC,∠5=∠6,
∴△ADE≌△CBF(ASA)。
∴AE=CF。
(2)∵∠1=∠2,∴DE∥BF。
又∵由(1)知△ADE≌△CBF,
∴DE=BF。
∴四邊形EBFD是平行四邊形.
“點睛”本題考查了平行四邊形的判定和性質,全等三角形的判定和性質,靈活運用平行四邊形的判定定理是解題關鍵.
科目:初中數學 來源: 題型:
【題目】定義:如圖(1),若分別以△ABC的三邊AC、BC、AB為邊向三角形外側作正方形ACDE、BCFG和ABMN,則稱這三個正方形為△ABC的外展三葉正方形,其中任意兩個正方形為△ABC的外展
雙葉正方形.
(1)作△ABC的外展雙葉正方形ACDE和BCFG,記△ABC,△DCF的面積分別為S1和S2.
①如圖(2),當∠ACB=90°時,求證:S1=S2;
②如圖(3),當∠ACB≠90°時,S1與S2是否仍然相等,請說明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三葉正方形,記△DCF、△AEN、△BGM的面積和為S,請利用圖(1)探究:當∠ACB的度數發生變化時,S的值是否發生變化?若不變,求出S的值;若變化,求出S的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某樓盤2013年房價為每平方米8100元,經過兩年連續降價后,2015年房價為7600元.設該樓盤這兩年房價平均降低率為x,根據題意可列方程為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】乘法公式的探究和應用
(1)如圖1,可以求出陰影部分的面積是__.(寫成兩數平方差的形式)
(2)如圖,若將陰影部分剪下來,重新拼成一個長方形,它的寬是__,長是__,面積是__.(寫成多項式乘積的形式)
(3)比較左、右兩圖陰影部分的面積,可以得到乘法公式__.(用式子來表示)
(4)運用你所得到的公式,計算下列各題.
①②(2x﹣y+3)(2x﹣3+y)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°
(1)先作∠ACB的平分線交AB邊于點P,再以點P為圓心,PA長為半徑作⊙P;(要求:尺規作圖,保留作圖痕跡,不寫作法)
(2)請你判斷(1)中BC與⊙P的位置關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價.
(2)求該校購買20個A品牌的足球和2個B品牌的足球的總費用.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com