精英家教網 > 初中數學 > 題目詳情

【題目】二次函數 的圖象如圖所示,反比例函數 與正比例函數 在同一坐標系中的大致圖象可能是( )

A.
B.
C.
D.

【答案】B
【解析】根據二次函數可得:a>0,當x=1時,即a+b+c<0,∴b+c<-a,即b+c<0,∴反比例函數處于一、三象限;正比例函數處于二、四象限.
【考點精析】認真審題,首先需要了解一次函數的性質(一般地,一次函數y=kx+b有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減小),還要掌握反比例函數的性質(性質:當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在期末考試來臨之際,同學們都進入緊張的復習階段,為了了解同學們晚上的睡眠情況,現對年級部分同學進行了調查統計,并制成如下兩幅不完整的統計圖:(其中A代表睡眠時間8小時左右,B代表睡眠時間6小時左右,C代表睡眠時間4小時左右,D代表睡眠時間5小時左右,E代表睡眠時間7小時左右),其中扇形統計圖中“E”的圓心角為90°,請你結合統計圖所給信息解答下列問題:

(1)共抽取了  名同學進行調查,同學們的睡眠時間的中位數是  小時左右,并將條形統計圖補充完整;

(2)請你估計年級每個學生的平均睡眠時間約多少小時?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD.∠1=2,∠3=4,試說明 ADBE,請你將下面解答過程填寫完整.

解:∵ABCD,

∴∠4=

∵∠3=4

∴∠3= (等量代換)

∵∠1=2

∴∠1+CAF=2+CAE 即∠BAE=

∴∠3=

ADBE ).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD的頂點為A1,2),B(﹣1,2),C,(﹣1,﹣2),D1,﹣2),點M和點N同時從E點出發,沿四邊形的邊做環繞勻速運動,M點以1單位/s的速度做逆時針運動,N點以2單位/s的速度做順時針運動,則點M和點N2017次相遇時的坐標為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=4,BC=3,點P從點A出發,以每秒4個單位長度的速度沿折線AC-CB運動,到點B停止.當點P不與△ABC的頂點重合時,過點P作其所在直角邊的垂線交AB 于點Q,再以PQ為斜邊作等腰直角三角形△PQR,且點R與△ABC的另一條直角邊始終在PQ同側,設△PQR與△ABC重疊部分圖形的面積為S(平方單位).點P的運動時間為t(秒).

(1)求點P在AC邊上時PQ的長,(用含t的代數式表示);
(2)求點R到AC、PQ所在直線的距離相等時t的取值范圍;
(3)當點P在AC邊上運動時,求S與t之間的函數關系式;
(4)直接寫出點R落在△ABC高線上時t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ADBCD,BD=ADDG=DC,E,F分別是BG,AC的中點.

1)求證:DE=DF,DEDF

2)連接EF,若AC=10,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一個水池,其底面是邊長為16尺的正方形,一根蘆葦AB生長在它的正中央,高出水面部分BC的長為2尺,如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦的頂部B恰好碰到岸邊的B′,則這根蘆葦AB的長是( 。

A. 15B. 16C. 17D. 18

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在RtABC中,∠C90°,∠A30°.

1)尺規作圖:作線段AB的垂直平分線l(保留作圖痕跡,不寫作法);

2)在已作的圖形中,若l分別交ABACBC的延長線于點D、E、F,連接BE.求證:EF2DE

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 如圖,△ABC是 的內接等邊三角形,AB=1.點DE在圓上,四邊形 為矩形,則這個矩形的面積是( )

A.
B.
C.
D.1

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视