【題目】若點A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+a上的三點,則y1 , y2 , y3的大小關系為( )
A.y3>y1>y2
B.y1>y3>y2
C.y3>y2>y1
D.y1>y2>y3
科目:初中數學 來源: 題型:
【題目】為節約能源,某單位按以下規定收取每月電費:用電不超過140度,按每度元收費,如果超過140度,超過部分按每度
元收費.
若某住戶六月份的用電量是130度,該用戶六月份應繳多少電費?
若該住戶七月份的用電量是200度,該用戶七月份應繳多少電費?
若某住戶十月份的用電量是a度,該用戶十月份應繳多少電費?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,六邊形的內角都相等,
,則下列結論成立的個數是
① ;②
;③
;④四邊形
是平行四邊形;⑤六邊形
即是中心對稱圖形,又是軸對稱圖形( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的5×8方格中,△ABC的頂點都在格點上.
(1)在給定的方格中,以直線AB為對稱軸,畫出△ABC的軸對稱圖形△ABD.
(2)求sin∠ABD的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在沒有量角器和圓規的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的做法是這樣的:如圖.
(1)在的內部任取一個點E,過點E作EM⊥OB;
(2)在邊上取一點N,作NF⊥OA于點N,且NF=EM;
(3)過點E作直線l1∥OB,過點F作直線l2∥OA,l1 與l2交于點;
(4)畫射線.
則射線為
的平分線.
根據小明的畫法回答下面的問題:
(1)小明作l1∥OB,l2∥OA的目的是___________________________________________;
(2)l1 與l2交于點,則射線
為
的平分線的依據是__________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A在拋物線y=x2﹣2x+4上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結BD,則對角線BD的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC為_____度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,對△ABC進行循環反復的軸對稱或中心對稱變換,若原來點A的坐標是(a,b),則經過第2018次變換后所得的A點坐標是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com