【題目】(1)根據下表回答:
1 | 1.7 | 1.73 | 1.74 | 1.8 | 2 | |
1 | 2.89 | 2.9929 | 3.0276 | 3.24 | 4 |
①的平方根是_____________;
②由表可知,在表中哪兩個相鄰的數之間(小數部分是兩位小數)?
(2)如圖,在平面直角坐標系中,已知三點
①三角形的面積是_______
②分別將三點的橫坐標乘
,縱坐標加
,記坐標變換后
所對的點分別為
在坐標系中畫出以這三點為頂點的三角形
【答案】(1) ①;②
在1.73與1.74之間;
(2) ①5.5;②見解析;
【解析】
(1) ①根據平方根的定義,由表格的信息即可得到;
②觀察表格的數據,即可得到答案;
(2) ①先觀察三角形在直角坐標系中的位置,再用一個矩形的面積減掉多余的三角形的面積即可得到;
②根據題意做變換,即可得到點變換后的坐標,再在直角坐標系中畫出來即可;
解:(1)①由表格可以看出所對應的x值為1.8
∴3.24的平方根是
②由表格可知,在1.73與1.74之間.
(2)①
故答案為5.5
②D點橫坐標為:,縱坐標為:
∴
E點橫坐標為:,縱坐標為:
∴
F點橫坐標為:,縱坐標為:
∴
根據得到的點的坐標在坐標系中畫出以這三點為頂點的三角形
如下圖:
科目:初中數學 來源: 題型:
【題目】小明在沒有量角器和圓規的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的做法是這樣的:如圖.
(1)在的內部任取一個點E,過點E作EM⊥OB;
(2)在邊上取一點N,作NF⊥OA于點N,且NF=EM;
(3)過點E作直線l1∥OB,過點F作直線l2∥OA,l1 與l2交于點;
(4)畫射線.
則射線為
的平分線.
根據小明的畫法回答下面的問題:
(1)小明作l1∥OB,l2∥OA的目的是___________________________________________;
(2)l1 與l2交于點,則射線
為
的平分線的依據是__________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】初中生在數學運算中使用計算器的現象越來越普遍,某校一興趣小組隨機抽查了本校若干名學生使用計算器的情況.以下是根據抽查結果繪制出的不完整的條形統計圖和扇形統計圖:
請根據上述統計圖提供的信息,完成下列問題:
(1)這次抽查的樣本容量是;
(2)請補全上述條形統計圖和扇形統計圖;
(3)若從這次接受調查的學生中,隨機抽查一名學生恰好是“不常用”計算器的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過點A(-1,0)、B(3,0)、C(0,3)三點。
(1)求拋物線的解析式。
(2)求△ABC的面積。若P是拋物線上一點(異于點C),且滿足△ABP的面積等于△ABC的面積,求滿足條件的點P的坐標。
(3)點M是線段BC上的點(不與B , C重合),過M作MN∥ 軸交拋物線于N , 若點M的橫坐標為
,請用含
的代數式表示線段MN的長。
(4)在(3)的條件下,連接NB、NC , 則是否存在點M,使△BNC的面積最大?若存在,求 的值,并求出△BNC面積的最大值。若不存在,說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,對△ABC進行循環反復的軸對稱或中心對稱變換,若原來點A的坐標是(a,b),則經過第2018次變換后所得的A點坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰Rt△ABC(∠ACB=90°)的直角邊與正方形DEFG的邊長均為2,且AC與DE在同一直線上,開始時點C與點D重合,讓△ABC沿這條直線向右平移,直到點A與點E重合為止.設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數關系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長方形ABCD中,DC=5 cm,在DC上存在一點E,沿直線AE把△AED折疊,使點D恰好落在BC邊上,設落點為F,若△ABF的面積為30 cm2,求△ADE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(a-1,a+b),B(a,0),且|a+b-3|+(a-2b)2=0,C為x軸上點B右側的動點,以AC為腰作等腰三角形ACD,使AD=AC,∠CAD=∠OAB,直線DB交y軸于點P.
(1)求證:AO=AB;
(2)求證:△AOC≌△ABD;
(3)當點C運動時,點P在y軸上的位置是否發生改變,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據以往的學習經驗,他想到了方程與函數的關系,一次函數y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b(k≠0)的解,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標﹣1和3即為x2﹣2x﹣3=0的解. 根據以上方程與函數的關系,如果我們直到函數y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標,即可知方程x3+2x2﹣x﹣2=0的解.
佳佳為了解函數y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數的圖象.
x | … | ﹣3 | ﹣ | ﹣2 | ﹣ | ﹣1 | ﹣ | 0 | 1 | 2 | … | ||
y | … | ﹣8 | ﹣ | 0 | m | ﹣ | ﹣2 | ﹣ | 0 | 12 | … |
(1)直接寫出m的值,并畫出函數圖象;
(2)根據表格和圖象可知,方程的解有個,分別為;
(3)借助函數的圖象,直接寫出不等式x3+2x2>x+2的解集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com