【題目】如圖,∠A=∠B=50°,P為AB中點,點M為射線AC上(不與點A重合)的任意點,連接MP,并使MP的延長線交射線BD于點N,設∠BPN=α.
(1)求證:△APM≌△BPN;
(2)當MN=2BN時,求α的度數;
(3)若△BPN的外心在該三角形的內部,直接寫出α的取值范圍.
【答案】(1)證明見解析;(2)α=50°;(3)40°<α<90°.
【解析】(1)根據AAS即可證明△APM≌△BPN;
(2)由(1)中的全等得:MN=2PN,所以PN=BN,由等邊對等角可得結論;
(3)三角形的外心是外接圓的圓心,三邊垂直平分線的交點,直角三角形的外心在直角頂點上,鈍角三角形的外心在三角形的外部,只有銳角三角形的外心在三角形的內部,所以根據題中的要求可知:△BPN是銳角三角形,由三角形的內角和可得結論.
(1)∵P是AB的中點,
∴PA=PB,
在△APM和△BPN中,
,
∴△APM≌△BPN;
(2)由(1)得:△APM≌△BPN,
∴PM=PN,
∴MN=2PN,
∵MN=2BN,
∴BN=PN,
∴α=∠B=50°;
(3)∵△BPN的外心在該三角形的內部,
∴△BPN是銳角三角形,
∵∠B=50°,
∴40°<∠BPN<90°,即40°<α<90°.
科目:初中數學 來源: 題型:
【題目】一個自然數的立方,可以分裂成若干個連續奇數的和。例如:和
分別可以按如圖所示的方式“分裂”成2個、3個和4個連續奇數的和,即
=3+5;
=7+9+11;
=13+15+17+19;…;若
也按照此規律來進行“分裂”,則
“分裂”出的奇數中,最大的奇數是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=kx+4圖象交直線OA于點A(1,2),交y軸于點B,點C為坐標平面內一點.
(1)求k值;
(2)若以O、A、B、C為頂點的四邊形為菱形,則C點坐標為 ;
(3)在直線AB上找點D,使△OAD的面積與((2)中菱形面積相等,則D點坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】文明交流互鑒是推動人類文明進步和世界和平發展的重要動力.2019年5月“亞洲文明對話大會”在北京成功舉辦,引起了世界人民的極大關注.某市一研究機構為了了解10~60歲年齡段市民對本次大會的關注程度,隨機選取了100名年齡在該范圍內的市民進行了調查,并將收集到的數據制成了尚不完整的頻數分布表、頻數分布直方圖和扇形統計圖,如下所示:
組別 | 年齡段 | 頻數(人數) |
第1組 | 5 | |
第2組 | ||
第3組 | 35 | |
第4組 | 20 | |
第5組 | 15 |
(1)請直接寫出 ,
,第3組人數在扇形統計圖中所對應的圓心角是 度.
(2)請補全上面的頻數分布直方圖;
(3)假設該市現有10~60歲的市民300萬人,問40~50歲年齡段的關注本次大會的人數約有多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把下列各數分別填入它所屬于的集合的括號內.
9,,+4.3,|﹣0.5|,﹣(+7),18%,(﹣13)4,﹣6,0.
正分數集合{_________}
負分數集合{_________}
負整數集合{__________}
非負整數集合{________}.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為響應黨中央號召,決定針對沿江兩種主要污染源:生活污水和沿江工廠污染物排放,分別用甲方案和乙方案進行治理,若江水污染指數記為Q,沿江工廠用乙方案進行一次性治理(當年完工),從當年開始,所治理的每家工廠一年降低的Q值平均為0.3.第一年有40家工廠用乙方案治理.經過三年治理,境內沿江水質明顯改善.
(1)第一年40家工廠用乙方案治理一年降低的Q值為______;
(2)從第二年起,每年用乙方案新治理的工廠數量比上一年都有增加,第三年新增的用乙方案.新治理的工廠數量是第二年新增的用乙方案新治理的工廠數量的1.5倍,第三年用乙方案治理所降低的Q值為57,設第二年新增的用乙方案新治理的工廠數量為m家,第三年新增的用乙方案新治理的工廠數量為n家.
①請列出關于m、n的方程組,并求解;
②該市生活污水用甲方案治理,第一年降低的Q值為20.5,從第二年起,每年所降低的Q值比上一年都增加a.若第三年用甲乙兩種方案治理所降低的Q值比第二年用甲乙兩種方案治理所降低的Q值大32,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=10.點D為y軸上一點,其坐標為(0,2),點P從點A出發以每秒2個單位的速度沿線段AC﹣CB的方向運動,當點P與點B重合時停止運動,運動時間為t秒.
(1)當點P經過點C時,求直線DP的函數解析式;
(2)①求△OPD的面積S關于t的函數解析式;
②如圖②,把長方形沿著OP折疊,點B的對應點B′恰好落在AC邊上,求點P的坐標.
(3)點P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點A、B、C在小正方形的頂點上.
在圖中畫出與
關于直線l成軸對稱的
;
三角形ABC的面積為______;
以AC為邊作與
全等的三角形,則可作出______個三角形與
全等;
在直線l上找一點P,使
的長最短.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com