【題目】如圖,點M是正方形ABCD內一點,△MBC是等邊三角形,連接AM、MD.對角線BD交CM于點N,現有以下結論:①∠AMD=150°;②MA2=MNMC;③;④
,其中正確的結論有____(填寫序號).
【答案】①②③④.
【解析】
①先根據等邊三角形得∠CMB=60°,再根據等腰三角形的性質得∠AMB=∠CMD=75°,最后根據周角的定義可得結論;
②證明△MND∽△MDC,列比例式可得結論;
③如圖1,作輔助線,設NH=x,根據平行線分線段成比例定理得結論.
④如圖2,設MG=x,根據直角三角形30度角的性質和勾股定理分別計算BC、AG、BG的長,根據面積公式計算可得結論;
∵△MBC是等邊三角形,
∴∠MBC=∠MCB=∠CMB=60°,BM=BC,
∵四邊形ABCD是正方形,
∴∠ABC=∠BCD=∠BAD=∠ADC=90°,AB=BC,
∴∠ABM=∠DCM=30°,
∵AB=BM,
∴∠AMB=∠BAM=(180°﹣30°)=75°,
同理∠CMD=∠CDM=75°,
∴∠AMD=360°﹣75°﹣75°﹣60°=150°;
故①正確;
∵四邊形ABCD是正方形,
∴∠BDC=45°,
∴∠MDN=∠CDM﹣∠BDC=75°﹣45°=30°,
∵∠CMD=∠CMD,∠MDN=∠DCM=30°,
∴△MND∽△MDC,
∴=
,
∴DM2=MNMC,
∵∠BAD=∠ADC,∠BAM=∠CDM,
∴∠MAD=∠MDA,
∴MA=DM,
∴MA2=MNMC,
故②正確;
過N作NH⊥CD于H,設NH=x,如圖1所示:
則NH⊥BC,∠NDH=∠DNH=45°,
∴NH=DH=x,
∵∠NCH=30°,∠CHN=90°
∴CN=2x,CH=x,
∵NH∥BC,
∴=
=
=
,
故③正確;
過M作MG⊥AB于G,如圖2所示:
設MG=x,
Rt△BGM中,∠GBM=30°,
∴BM=BC=AB=2x,BG=x,
∴AG=2x﹣x,
∴=
=
=
=
,
故④正確;
故答案為:①②③④.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+ax+b經過點A(﹣2,0),B(1,3).
(1)求拋物線的解析式;
(2)由圖象直接寫出:x取何值時,y隨x的增大而減少;
(3)根據圖象回答:x取何值時,y>0.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將二次函數y=x2﹣5x﹣6在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新圖象,若直線y=2x+b與這個新圖象有3個公共點,則b的值為( 。
A. ﹣或﹣12B. ﹣
或2C. ﹣12或2D. ﹣
或﹣12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊BC上的一動點(不與點B、C重合),連接DE、點C關于直線DE的對稱點為C′,連接AC′并延長交直線DE于點P,F是AC′的中點,連接DF.
(1)求∠FDP的度數;
(2)連接BP,請用等式表示AP、BP、DP三條線段之間的數量關系,并證明;
(3)連接AC,若正方形的邊長為,請直接寫出△ACC′的面積最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1所示,點E在弦AB所對的優弧上,且為半圓,C是
上的動點,連接CA、CB,已知AB=4cm,設B、C間的距離為xcm,點C到弦AB所在直線的距離為y1cm,A、C兩點間的距離為y2cm.
小明根據學習函數的經驗,分別對函數y1、y2歲自變量x的變化而變化的規律進行了探究.下面是小明的探究過程,請補充完整.
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 0.78 | 1.76 | 2.85 | 3.98 | 4.95 | 4.47 |
y2/cm | 4 | 4.69 | 5.26 | 5.96 | 5.94 | 4.47 |
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數值所對應的點(x,y1),(x,y2),并畫出函數y1、y2的圖象;
(3)結合函數圖象,解決問題:
①連接BE,則BE的長約為 cm.
②當以A、B、C為頂點組成的三角形是直角三角形時,BC的長度約為 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC的中點,兩邊PE,PF分別交AB,AC于點E,F,現給出以下四個結論:(1)AE=CF;(2)△EPF是等腰直角三角形;(3)S四邊形AEPF=S△ABC;(4)當∠EPF在△ABC內繞頂點P旋轉時始終有EF=AP.(點E不與A、B重合),上述結論中是正確的結論的概率是( 。
A.1個B.3個C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與x軸交于A(﹣4,0)、B(2,0)兩點,與y軸交于C,M為此拋物線的頂點.
(1)求此拋物線的函數解析式;
(2)動直線l從與直線AC重合的位置出發,繞點A順時針旋轉,與直線AB重合時終止運動,直線l與BC交于點D,P是線段AD的中點.
①直接寫出點P所經過的路線長為 ;
②點D與B、C不重合時,過點D作DE⊥AC于點E,作DF⊥AB于點F,連接PE、PF、EF,在旋轉過程中,求EF的最小值;
(3)將拋物線C1平移得到拋物線C2,已知拋物線C2的頂點為N,與直線AC交于E、F兩點,若EF=AC,求直線MN的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使AB=AC,連接AC,過點D作DE⊥AC,垂足為 E.
(1)求證:DC=BD;
(2)求證:DE為⊙O的切線;
(3)若AB=12,AD=6,連接OD,求扇形BOD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小明在教學樓的窗戶A處,測量樓前的一棵樹CD的高.現測得樹頂C處的俯角為45°,樹底D處的俯角為60°,樓底到大樹的距離BD為10米.請你幫助小明計算樹的高度(精確到0.1米).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com