【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.
(1)若花園的面積為252m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是17m和6m,要將這棵樹圍在花園內(含邊界,不考慮樹的粗細),求花園面積S的最大值.
【答案】(1)18m或14m;(2)花園面積的最大值是255平方米.
【解析】
(1)根據AB=x米可知BC=(32-x)米,再根據矩形的面積公式即可得出結論;
(2)根據P處有一棵樹與墻CD、AD的距離分別是18米和8米求出x的取值范圍,再根據(1)中的函數關系式即可得出結論.
解:(1)設AB=x米,可知BC=(32-x)米,根據題意得:x(32-x)=252.
解這個方程得:x1=18,x2=14,
答:x的長度18m或14m.
(2)設周圍的矩形面積為S,
則S=x(32-x)=-(x-16)2+256.
∵在P處有一棵樹與墻CD,AD的距離是17m和6米,
∴6≤x≤15.
∴當x=15時,S最大= -(15-16)2+256=255(平方米).
答:花園面積的最大值是255平方米.
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+2與x軸交于A,B兩點,與y軸交于點C,AB=4,矩形OBDC的邊CD=1,延長DC交拋物線于點E.
(1)求拋物線的解析式;
(2)如圖2,點P是直線EO上方拋物線上的一個動點,過點P作y軸的平行線交直線EO于點G,作PH⊥EO,垂足為H.設PH的長為l,點P的橫坐標為m,求l與m的函數關系式(不必寫出m的取值范圍),并求出l的最大值;
(3)如果點N是拋物線對稱軸上的一點,拋物線上是否存在點M,使得以M,A,C,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,BC=4,以BC的中點O為圓心分別與AB,AC相切于D、E兩點,則的長為( )
A. B.
C.
D.
π
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,借助直角三角板可以找到一元二次方程的實數根,比如對于方程x2﹣5x+2=0,操作步驟是:第一步:根據方程系數特征,確定一對固定點A(0,1),B(5,2);第二步:在坐標平面中移動一個直角三角板,使一條直角邊恒過點A,另一條直角邊恒過點B;第三步:在移動過程中,當三角板的直角頂點落在x軸上點C處時,點C的橫坐標m即為該方程的一個實數根(如圖1);第四步:調整三角板直角頂點的位置,當它落在x軸上另一點D處時,點D的橫坐標為n即為該方程的另一個實數根;(1)在圖2中,按照“第四步“的操作方法作出點D(請保留作出點D時直角三角板兩條直角邊的痕跡);(2)結合圖1,請證明“第三步”操作得到的m就是方程x2﹣5x+2=0的一個實數根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A1,A2,A3,…和B1,B2,B3,…分別在直線y=x+b和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果點A1(1,1),那么點A2018的縱坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在同一平面坐標系中,函數y=mx+m和y=﹣mx2+2x+2(m是常數,且m≠0)的圖象可能是( 。
A. B.
C.
D.
【答案】D
【解析】A.由函數y=mx+m的圖象可知m<0,即函數y=mx2+2x+2開口方向朝上,與圖象不符,故A選項錯誤;
B.由函數y=mx+m的圖象可知m<0,對稱軸為x=<0,則對稱軸應在y軸左側,與圖象不符,故B選項錯誤;
C.由函數y=mx+m的圖象可知m>0,即函數y=mx2+2x+2開口方向朝下,與圖象不符,故C選項錯誤;
D.由函數y=mx+m的圖象可知m<0,即函數y=mx2+2x+2開口方向朝上,對稱軸為x=<0,則對稱軸應在y軸左側,與圖象相符,故D選項正確;
故選:D.
【題型】單選題
【結束】
10
【題目】如圖,已知菱形ABCD的周長為16,面積為,E為AB的中點,若P為對角線BD上一動點,則EP+AP的最小值為( )
A. 2 B. 2 C. 4 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務精神,傳播“奉獻他人、提升自我”的志愿服務理念,合肥市某中學利用周末時間開展了“助老助殘、社區服務、生態環保、網絡文明”四個志愿服務活動(每人只參加一個活動),九年級某班全班同學都參加了志愿服務,班長為了解志愿服務的情況,收集整理數據后,繪制以下不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:
(1)請把折線統計圖補充完整;
(2)求扇形統計圖中,網絡文明部分對應的圓心角的度數;
(3)小明和小麗參加了志愿服務活動,請用樹狀圖或列表法求出他們參加同一服務活動的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3,頂點為E,該拋物線與x軸交于A,B兩點,與y軸交子點C,且OB=OC=3OA,直線y=﹣x+1與y軸交于點D.求∠DBC﹣∠CBE=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把矩形ABCD沿AC折疊,使點D與點E重合,AE交BC于點F,過點E作EG∥CD交AC于點G,交CF于點H,連接DG.
(1)求證:四邊形ECDG是菱形;
(2)若DG=6,AG=,求EH的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com