【題目】如圖,在等腰△ABC中,AC=BC=3,AB=6,點E從點B沿著射線BA以每秒3個單位的速度運動,過點E作BC的平行線交∠ACB的外角平分線CF于點F.
(1)求證:四邊形BCFE是平行四邊形;
(2)當點E是邊AB的中點時,連結AF,試判斷四邊形AECF的形狀,并說明理由;
(3)設運動時間為t秒,是否存在t的值,使得以△EFC的其中兩邊為邊所構造的平行四邊形恰好是菱形?若存在,請求出t的值;若不存在,試說明理由.
【答案】(1)證明見解析;(2)四邊形AECF是矩形,理由見解析;(3)t的值為秒或
秒或2秒
【解析】
(1)由等腰三角形的性質得:∠B=∠BAC,再由角平分線定義和三角形外角的性質可解答;
(2)由有一個角是直角的平行四邊形是矩形可解答;
(3)分三種情況:①EF=CF;②CE=CF;②CE=EF;分別列方程可解答.
證明:(1)如圖1,
∵AC=BC,
∴∠B=∠BAC,
∵CF平分∠ACH,
∴∠ACF=∠FCH,
∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,
∴∠FCH=∠B,
∴BE∥CF,
∵EF∥BC,
∴四邊形BCFE是平行四邊形;
(2)四邊形AECF是矩形,
理由是:
∵E是AB的中點,AC=BC,
∴CE⊥AB,
∴∠AEC=90°,
由(1)知:四邊形BCFE是平行四邊形,
∴CF=BE=AE,
∵AE∥CF,AE=CF,
∴四邊形AECF是平行四邊形,且∠AEC=90°,
∴四邊形AECF是矩形;
(3)①以EF和CF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,如圖2,
∴BE=BC,即3t=3,
∴t=;
②以CE和CF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,如圖3,過C作CD⊥AB于D,連接GC,
∵AC=BC=3,AB=6,
∴BD=AD=3,
由勾股定理得:CD==
=6,
∵四邊形CEGF是菱形,
∴EF⊥GC,且EF∥BC,
∴GC⊥BC,且∠EGC=∠ECG,
∴∠EBC=∠ECB,
∴BE=CE=3t,
∵(3t)2=62+(3t﹣3)2,
∴t=;
③以CE和EF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,如圖4,CA=AF=BC,此時E與A重合,
∴t=2,
綜上所述,t的值為秒或
秒或2秒;
科目:初中數學 來源: 題型:
【題目】人民商場銷售某種商品,統計發現:每件盈利元時,平均每天可銷售
件.經調查發現,該商品每降價
元,商場平均每天可多售出
件.
假如現在庫存量太大,部門經理想盡快減少庫存,又想銷售該商品日盈利達到
元,請你幫忙思考,該降價多少?
假如部門經理想銷售該商品的日盈利達到最大,請你幫忙思考,又該如何降價?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀:我們約定,在平面直角坐標系中,經過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=x+4.如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線經過B.C兩點,頂點D在正方形內部.
(1)寫出點M(2,3)任意兩條特征線___________________
(2)若點D有一條特征線是y=x+1,求此拋物線的解析式________________________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線的頂點為P(1,4),拋物線與y軸交于點C(0,3),與x軸交于A、B兩點.
(1)求此拋物線的解析式;
(2)求四邊形OBPC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著移動互聯網的快速發展,基于互聯網的共享單車應運而生.為了解某單位使用共享單車的情況,該單位有200名員工,某研究小組隨機采訪10位員工,得到這10位員工一周內使用共享單車的次數分別為:17,12,15,20,17,0,7,26,17,9.
(1)這組數據的中位數是 ,眾數是
(2)試用平均數估計該單位員工一周內使用共享單車的總次數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產業扶持,發展了養殖業后,到2018年,家庭年人均純收入達到了3600元.
(1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長率;
(2)若年平均增長率保持不變,2019年該貧困戶的家庭年人均純收入是否能達到4200元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2014年1月,國家發改委出臺指導意見,要求2015年底前,所有城市原則上全面實行居民階梯水價制度. 小軍為了解市政府調整水價方案的社會反響,隨機訪問了自己居住在小區的部分居民,就“每月每戶的用水量”和“調價對用水行為改變”兩個問題進行調查,并把調查結果整理成下面的圖1,圖2.
小軍發現每月每戶的用水量在5m3-35m3之間,有7戶居民對用水價格調價漲幅抱無所謂,不用考慮用水方式的改變. 根據小軍繪制的圖表和發現的信息,完成下列問題:
(1)n =________,小明調查了_____戶居民,并補全圖1;
(2)每月每戶用水量的中位數落在______之間,眾數落在_______之間;
(3)如果小明所在的小區有1200戶居民,請你估計“視調價漲幅采取相應的用水方式改變”的居民戶數有多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2+m過原點,與拋物線y2=(x﹣3)2+n交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.下列結論:①兩條拋物線的對稱軸距離為5;②x=0時,y2=5;③當x>3時,y1﹣y2>0;④y軸是線段BC的中垂線.正確結論是________(填寫正確結論的序號).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com