【題目】在證明等腰三角形的判定定理“等角對等邊”,即“如圖,已知:∠B=∠C,求證:AB=AC”時,小明作了如下的輔助線,下列對輔助線的描述正確的有( )
①作∠BAC的平分線AD交BC于點D②取BC邊的中點D,連接AD③過點A作AD⊥BC,垂足為點D④作BC邊的垂直平分線AD,交BC于點D
A.1個B.2個C.3個D.4個
科目:初中數學 來源: 題型:
【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2.
(1)求y與x之間的函數關系式;
(2)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班為了解學生一學期做義工的時間情況,對全班50名學生進行調查,按做義工的時間(單位:小時),將學生分成五類:
類(
),
類(
),
類(
),
類(
),
類(
),繪制成尚不完整的條形統計圖如圖11.
根據以上信息,解答下列問題:
(1) 類學生有 人,補全條形統計圖;
(2)類學生人數占被調查總人數的 %;
(3)從該班做義工時間在的學生中任選2人,求這2人做義工時間都在
中的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某旅行團32人在景區A游玩,他們由成人、少年和兒童組成.已知兒童10人,成人比少年多12人.
(1)求該旅行團中成人與少年分別是多少人?
(2)因時間充裕,該團準備讓成人和少年(至少各1名)帶領10名兒童去另一景區B游玩.景區B的門票價格為100元/張,成人全票,少年8折,兒童6折,一名成人可以免費攜帶一名兒童.
①若由成人8人和少年5人帶隊,則所需門票的總費用是多少元?
②若剩余經費只有1200元可用于購票,在不超額的前提下,最多可以安排成人和少年共多少人帶隊?求所有滿足條件的方案,并指出哪種方案購票費用最少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“勤勞”是中華民族的傳統美德,學校要求同學們在家里幫助父母做一些力所能及的家務.在本學期開學初,小穎同學隨機調查了部分同學寒假在家做家務的總時間,設被調查的每位同學寒假在家做家務的總時間為x小時,將做家務的總時間分為五個類別:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并將調查結果制成如下兩幅不完整的統計圖:
根據統計圖提供的信息,解答下列問題:
(1)本次共調查了 名學生;
(2)請根據以上信息直接在答題卡中補全條形統計圖;
(3)扇形統計圖中m的值是 ,類別D所對應的扇形圓心角的度數是 度;
(4)若該校有800名學生,根據抽樣調查的結果,請你估計該校有多少名學生寒假在家做家務的總時間不低于20小時.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某次數學測驗中,一道題滿分3分,老師評分只給整數,即得分只能為0分,1分,2分,3分.李老師為了了解學生得分情況和試題的難易情況,對初三(1)班所有學生的試題進行了分析整理,并繪制了兩幅尚不完整的統計圖,如圖所示.
解答下列問題:
(1)m= ,n= ,并補全條形統計圖;
(2)在初三(1)班隨機抽取一名學生的成績,求抽中的成績為得分眾數的概率;
(3)根據右側“小知識”,通過計算判斷這道題對于該班級來說,屬于哪一類難度的試題?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“新冠肺炎”肆虐,無數抗疫英雄涌現,以下四位抗疫英雄是鐘南山、李蘭娟、李文亮、張定宇(依次記為).為讓同學們了解四位的事跡,老師設計如下活動:取四張完全相同的卡片,分別寫上
四個標號,然后背面朝上放置,攪勻后每個同學從中隨機抽取一張,記下標號后放回,老師要求每位同學依據抽到的卡片上的標號查找相應抗疫英雄的資料,并做成小報.
(1)班長在四種卡片中隨機抽到標號為的概率為_______.
(2)平平和安安兩位同學抽到的卡片是不同英雄的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點到直線的距離即為點到直線的垂線段的長.
(1)如圖1,取點M(1,0),則點M到直線l:y=x﹣1的距離為多少?
(2)如圖2,點P是反比例函數y=在第一象限上的一個點,過點P分別作PM⊥x軸,作PN⊥y軸,記P到直線MN的距離為d0,問是否存在點P,使d0=
?若存在,求出點P的坐標,若不存在,請說明理由.
(3)如圖3,若直線y=kx+m與拋物線y=x2﹣4x相交于x軸上方兩點A、B(A在B的左邊).且∠AOB=90°,求點P(2,0)到直線y=kx+m的距離最大時,直線y=kx+m的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在中,
,
,
.過點
作
,動點
在射線
上(點
不與
重合),聯結
并延長到點
,使
.
(1)求的面積;
(2)設,
,求
關于
的函數解析式,并寫出
的取值范圍;
(3)連接,如果
是直角三角形,求
的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com