【題目】如圖,等腰三角形 ABC 中,AC=BC=13,AB=10.以 BC 為直徑作⊙O 交 AB 于點 D,交 AC 于點 G,DF⊥AC,垂足為 F,交 CB 的延長線于點 E.
(1)求證:直線 EF 是⊙O 的切線;
(2)求 sin∠E 的值.
【答案】(1)見解析(2)
【解析】
(1)求證直線EF是⊙O的切線,只要連接OD證明OD⊥EF即可;
(2)根據∠E=∠CBG,可以把求sin∠E的值得問題轉化為求sin∠CBG,進而轉化為求Rt△BCG中,兩邊的比的問題.
(1)證明:方法1:連接OD、CD.
∵BC是直徑,
∴CD⊥AB.
∵AC=BC.
∴D是AB的中點.
∵O為CB的中點,
∴OD∥AC.
∵DF⊥AC,
∴OD⊥EF.
∴EF是O的切線.
方法2:∵AC=BC,
∴∠A=∠ABC,
∵OB=OD,
∴∠DBO=∠BDO,
∵∠A+∠ADF=90°
∴∠EDB+∠BDO=∠A+∠ADF=90°.
即∠EDO=90°,
∴OD⊥ED
∴EF是O的切線.
(2)解:連BG.
∵BC是直徑,
∴∠BDC=90°.
∵AC=BC=13,AB=10
∴AD=AB=5
∴CD=
∵ABCD=2S△ABC=ACBG,
∴BG==
.
∴CG=.
∵BG⊥AC,DF⊥AC,
∴BG∥EF.
∴∠E=∠CBG,
∴sin∠E=sin∠CBG==
.
科目:初中數學 來源: 題型:
【題目】某超市預測某飲料有發展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:拋物線:
(
、
、
為常數,且
)與
軸分別交于
,
兩點,與
軸交于點
.
(1)求拋物線的表達式;
(2)將平移后得到拋物線
,點
、
在
上(點
在點
的上方),若以點
、
、
、
為頂點的四邊形是正方形,求拋物線
的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數且無滿分,最低為75分)分成五組,并繪制了下列不完整的統計圖表.
分數段 | 頻數 | 頻率 |
74.5~79.5 | 2 | 0.05 |
79.5~84.5 | m | 0.2 |
84.5~89.5 | 12 | 0.3 |
89.5~94.5 | 14 | n |
94.5~99.5 | 4 | 0.1 |
(1)表中m=__________,n=____________;
(2)請在圖中補全頻數直方圖;
(3)甲同學的比賽成績是40位參賽選手成績的中位數,據此推測他的成績落在_________分數段內;
(4)選拔賽中,成績在94.5分以上的選手,男生和女生各占一半,學校從中隨機確定2名選手參加全市決賽,請用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點P0的坐標為(2,0),將點P0繞著原點O按逆時針方向旋轉60°得點P1,延長OP1到點P2,使OP2=2OP1,再將點P2繞著原點O按逆時針方向旋轉60°得點P3,則點P3的坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一塊銳角三角形卡紙余料ABC,它的邊BC=120cm,高AD=80cm,為使卡紙余料得到充分利用,現把它裁剪成一個鄰邊之比為2:5的矩形紙片EFGH和正方形紙片PMNQ,裁剪時,矩形紙片的較長邊在BC上,正方形紙片一邊在矩形紙片的較長邊EH上,其余頂點均分別在AB,AC上,具體裁剪方式如圖所示。
(1)求矩形紙片較長邊EH的長;
(2)裁剪正方形紙片時,小聰同學是按以下方法進行裁剪的:先沿著剩余料中與邊EH平行的中位線剪一刀,再沿過該中位線兩端點向邊EH所作的垂線剪兩刀,請你通過計算,判斷小聰的剪法是否正確.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】參照學習函數的過程與方法,探究函數的圖象與性質列表:
描點:在平面直角坐標系中,以自變量x的取值為橫坐標,以相應的函數值為縱坐標,描出相應的點,如圖所示:
(1)請補全函數圖象:
(2)觀察圖象并分析表格,回答下列問題:
①當時,y隨x的增大而_________;(填“增大”或“減小”)
②圖象關于點__________中心對稱.(填點的坐標)
③當時,
的最小值是_________.
(3)結合函數圖象,當時,求x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com