精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知正方形DEFG的頂點D、E在△ABC的邊BC上,頂點G、F分別在邊AB、AC上,如果BC=5,ABC的面積是10,那么這個正方形的邊長是_____

【答案】

【解析】

AH⊥BCH,交GFM,如圖,先利用三角形面積公式計算出AH=4,設正方形DEFG的邊長為x,則GF=x,MH=x,AM=4-x,再證明△AGF∽△ABC,則根據相似三角形的性質得方程,然后解關于x的方程即可.

解:如圖,作AH⊥BCH,交GFM,


∵△ABC的面積是10,

BCAH=10,
∴AH=4,
設正方形DEFG的邊長為x,則GF=x,MH=x,AM=4-x,
∵GF∥BC,
∴△AGF∽△ABC,

,

,解得x= 。

故答案為。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,OC是∠AOB的平分線,點POC上且OP=4,∠AOB=60°,過點P的動直線DEOAD,交OBE,那么=_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊿ABC中,∠B = 50∠C = 70,AD是高,AE是角平分線,

1∠BAC=__________,∠DAC=__________.(填度數)

2)求∠EAD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABC是等邊三角形,以BC為直徑的半圓O與邊AB相交于點D,DE⊥AC,垂足為點E.

(1)判斷DE與⊙O的位置關系,并證明你的結論;

(2)若AE=1,求⊙O的直徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O是正ABC內一點,OA6,OB8,OC10,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO',下列結論:①△BO'A可以由BOC繞點B逆時針旋轉60°得到;②點OO的距離為6;③∠AOB150°;④SBOC12+6; S四邊形AOBO24+12.其中正確的結論是_____.(填序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)觀察猜想:

RtABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把ABD繞點A逆時針旋轉90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數量關系是   ,位置關系是   

(2)探究證明:

在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.

(3)拓展延伸:

如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點DDFADCE于點F,請直接寫出線段CF長度的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P是線段AB上的一個點,分別以AP,PB為邊在AB的同側作菱形APCD和菱形PBFE,點P,CE在一條直線上,點MN分別是對角線AC,BE的中點,連接MN,PM,PN,若∠DAP60°,AP2+3PB22,則線段MN的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=6AC=8,BC=10,P為邊BC上一動點(且點P不與點B、C重合),PEABEPFACF,MEF中點.AM的長為x,則x的取值范圍是(  )

A. 4≥x2.4 B. 4≥x≥2.4 C. 4x2.4 D. 4x≥2.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】.如圖所示,已知△ABC和△BDE都是等邊三角形,下列結論:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等邊三角形;⑥FG∥AD,其中正確的有( )

A. 3個 B. 4個 C. 5個 D. 6個

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视