正方形ABCD的邊長為3,E,F 分別是AB,BC邊上的點,且∠EDF=45°.將
△DAE繞點D逆時針旋轉90°,得到△DCM.
(1)求證:EF=FM;
(2)當AE=1時,求EF的長.
(1)見解析 (2)
【解析】(1)證明:∵△DAE逆時針旋轉90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,
∴ F,C,M三點共線,DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°.
∵ ∠EDF=45°,∴∠FDM=∠EDF=45°.
在△DEF和△DMF中,DE=DM,∠EDF=∠MDF,DF=DF,
∴△DEF≌△DMF(SAS),∴ EF=MF.
(2)解:設EF=MF=x,∵AE=CM=1,且BC=3,∴ BM=BC+CM=3+1=4,
∴BF=BM-MF=BM-EF=4-x.
∵EB=AB-AE=3-1=2,在Rt△EBF中,
由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,
解得:x=,即EF=
.
科目:初中數學 來源: 題型:
3 |
5 |
4 |
5 |
查看答案和解析>>
科目:初中數學 來源: 題型:
2 | 3 |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com