【題目】如圖,點D是△ABC內一點,點E,F,G,H分別是AB,AC,CD,BD的中點。
(1)求證:四邊形EFGH是平行四邊形;(2)已知AD=6,BD=4,CD=3,∠BDC=90°,求四邊形EFGH的周長。
【答案】(1)見解析;(2)周長為:11.
【解析】
(1)根據三角形的中位線的定理和平行四邊形的判定即可解答;
(2)利用勾股定理列式求出BC的長,再根據三角形的中位線平行于第三邊并且等于第三邊的一半求出EH=FG=AD,EF=GH=
BC,然后代入數據進行計算即可得解.
(1)證明:∵點E,F 分別是AB,AC 的中點,
∴EF 是△ABC 的中位線,∴EF∥BC 且EF=BC;
又∵點H,G 分別是BD,CD 的中點,∴HG 是△BCD 的中位線,∴HG∥BC
且HG=BC;
∴EF∥HG 且EF=HG,∴四邊形EFGH 是平行四邊形.
(2)∵點E,H 分別是AB,BD 的中點,∴EH 是△ABD 的中位線,∴EH=AD=3;
∵∠BDC=90°,∴△BCD 是直角三角形;
在Rt△BCD 中,CD=3,BD=4,∴由勾股定理得:BC=5;
∵HG=BC,∴HG=
;
由(1)知,四邊形EFGH 是平行四邊形,∴周長為2EH+2HG=11.
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系平面內,函數y=(x>0,m是常數)的圖象經過A(1,4)、B(a,b),其中a>1,過點A作x軸的垂線,垂足為C,過點B作y軸的垂線,垂足為D,連接AD,AB,DC,CB.
(1)求反比例函數解析式;
(2)當△ABD的面積為S,試用a的代數式表示求S.
(3)當△ABD的面積為2時,判斷四邊形ABCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了迎接期中考試,小強對考試前剩余時間作了一個安排,他把計劃復習重要內容的時間用一個四邊形圈起來.如圖,他發現,用這樣的四邊形圈起來五個數的和恰好是5的倍數,他又試了幾個位置,都符合這樣的特征。
(1)若設這五個數中間的數為a,請你用整式的加減說明其中的道理.
(2)這五個數的和能為150嗎?若能,請寫出中間那個數,若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:梯形中,
,聯結
(如圖1). 點
沿梯形的邊從點
移動,設點
移動的距離為
,
.
(1)求證:;
(2)當點從點
移動到點
時,
與
的函數關系(如圖2)中的折線
所示. 試求
的長;
(3)在(2)的情況下,點從點
移動的過程中,
是否可能為等腰三角形?若能,請求出所有能使
為等腰三角形的
的取值;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為了增強學生體質,全面實施“學生飲用奶”營養工程.某品牌牛奶供應商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學生飲用.浠馬中學為了了解學生對不同口味牛奶的喜好,對全校訂購牛奶的學生進行了隨機調查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數統計圖:
(1)本次被調查的學生有 名;
(2)補全上面的條形統計圖1,并計算出喜好“菠蘿味”牛奶的學生人數在扇形統計圖中所占圓心角的度數;
(3)該校共有1200名學生訂購了該品牌的牛奶,牛奶供應商每天只為每名訂購牛奶的學生配送一盒牛奶.要使學生每天都喝到自己喜好的口味的牛奶,牛奶供應商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內接四邊形,AB=CD.
(1)如圖(1),求證:AD∥BC;
(2)如圖(2),點F是AC的中點,弦DG∥AB,交BC于點E,交AC于點M,求證:AE=2DF;
(3)在(2)的條件下,若DG平分∠ADC,GE=5,tan∠ADF=4
,求⊙O的半徑。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=-3x+3與坐標軸分別交于A,B兩點,以線段AB為邊,在第一象限內作正方形ABCD,直線y=3x-2與y軸交于點F,與線段AB交于點E,將正方形ABCD沿x軸負半軸方向平移a個單位長度,使點D落在直線EF上.有下列結論:①△ABO的面積為3;②點C的坐標是(4,1);③點E到x軸距離是;
④a=1.其中正確結論的個數是( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.
(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.
①求證:△ABP∽△BCP;
②若PA=3,PC=4,則PB= .
(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD 相交于P點.如圖(2)
①求∠CPD的度數;
②求證:P點為△ABC的費馬點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個地方,豎起竹竿(即AE),這時,他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時竹竿的影長正好是一根竹竿的長度(即BD=2米).此時,小明抬頭瞧瞧路燈,若有所思地說:“噢,我知道路燈有多高了!”同學們,請你和小明一起解答這個問題:
(1)在圖中作出路燈O的位置,并作OP⊥l于P.
(2)求出路燈O的高度,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com