【題目】在平面直角坐標系xOy中,點P在函數的圖象上,過P作直線
軸于點A,交直線
于點M,過M作直線
軸于點B.交函數
的圖象于點Q。
(1)若點P的橫坐標為1,寫出點P的縱坐標,以及點M的坐標;
(2)若點P的橫坐標為t,
①求點Q的坐標(用含t的式子表示)
②直接寫出線段PQ的長(用含t的式子表示)
【答案】(1)點P的縱坐標為4,點M的坐標為;(2)①
;②
【解析】
(1)直接將點P的橫坐標代入中,得到點P的縱坐標,由點M在PA上,PA⊥x軸,即可得到M的坐標;
(2)①由點P的橫坐標為t,得到M的橫坐標為t,因為M在y=x上,得到M的坐標為(t,t),從而得到Q的縱坐標,代入反比例函數解析式即可的到點Q的坐標;
②連接PQ,很快就發現PQ是直角三角形PMQ的斜邊,直接利用勾股定理即可得到答案.
解:(1)∵點P在函數的圖象上,點P的橫坐標為1,
∴,
∴點P的縱坐標為4,
∵點M在PA上,PA⊥x軸,且點P的橫坐標為1,
∴點M的橫坐標為1,
又∵點M在直線y=x上,
∴點M的坐標為(1,1),
故答案為點P的縱坐標為4,點M的坐標為(1,1);
(2) ①∵點P的橫坐標為t,點P在函數的圖象上,
∴點P的坐標為,
∵直線PA⊥x軸,交直線y=x于點M,
∴點M的坐標為,
∵直線MB⊥y軸,交函數的圖象于點Q,
∴點Q的坐標為;
②連接PQ,
∵P的坐標為,M的坐標為
,Q的坐標為
,
∴PM=,MQ=
,
∴PQ=,
故答案為線段PQ的長為.
科目:初中數學 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCD(AB<BC)的對角線的交點O旋轉(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點。
⑴該學習小組成員意外的發現圖①(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖③中(三角板一邊與OC重合),CN2=BN2+CD2,請你對這名成員在圖①和圖③中發現的結論選擇其一說明理由。
⑵試探究圖②中BN、CN、CM、DN這四條線段之間的數量關系,寫出你的結論,并說明理由。
⑶將矩形ABCD改為邊長為1的正方形ABCD,直角三角板的直角頂點繞O點旋轉到圖④,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之 間所滿足的數量關系(不需要證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A是雙曲線在第一象限的分支上的一個動點,連接AO并延長與這個雙曲線的另一分支交于點B,以AB為底邊作等腰直角三角形ABC,使得點C位于第四象限。
(1)點C與原點O的最短距離是________;
(2)沒點C的坐標為(,點A在運動的過程中,y隨x的變化而變化,y關于x的函數關系式為________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,數軸上點、
對應的數分別為
、
,且滿足
,點
對應點的數為-3.
(1)______,
______;
(2)若動點、
分別從
、
同時出發向右運動,點
的速度為3個單位長度/秒;點
的速度為1個單位長度/秒,求經過多長時間
、
兩點的距離為
;
(3)在(2)的條件下,若點運動到點
立刻原速返回,到達點
后停止運動,點
運動至點
處又以原速返回,到達點
后又折返向
運動,當點
停止運動點
隨之停止運動.求在整個運動過程中,兩點
,
同時到達的點在數軸上表示的數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系xOy中,對于點M和圖形W,若圖形W上存在一點N(點M,N可以重合),使得點M與點N關于一條經過原點的直線l對稱,則稱點M與圖形W是“中心軸對稱”的
對于圖形和圖形
,若圖形
和圖形
分別存在點M和點N(點M,N可以重合),使得點M與點N關于一條經過原點的直線l對稱,則稱圖形
和圖形
是“中心軸對稱”的。
特別地,對于點M和點N,若存在一條經過原點的直線l,使得點M與點N關于直線l對稱,則稱點M和點N是“中心軸對稱”的。
(1)如圖1,在正方形ABCD中,點,點
,
①下列四個點,
,
,
中,與點A是“中心軸對稱”的是________;
②點E在射線OB上,若點E與正方形ABCD是“中心軸對稱”的,求點E的橫坐標的取值范圍;
(2)四邊形GHJK的四個頂點的坐標分別為,
,
,
,一次函數
圖象與x軸交于點M,與y軸交于點N,若線段與四邊形GHJK是“中心軸對稱”的,直接寫出b的取值范圍。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進一批小玩具,每個成本價為20元,經調查發現售價為32元時,每天可售出20個,若售價每增加5元,每天銷售量減少2個;售價每減少5元,每天銷售量增加2個,商店同一天內售價保持不變.
(1)若售價增加元,則銷售量是(______________)個(用含
的代數式表示);
(2)某日商店銷售該玩具的利潤為384元,求當天的售價是多少元?(利潤=售價-進價)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有理數a,b在數軸上的對應點位置如圖所示:
(1)化簡:∣a∣+∣a+b∣-2∣a-b∣
(2)若a與-的距離等于b與-
的距離,求-3(a+b)+5的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國的國球是乒乓球,世界上乒乓球板的拍形大體上可以歸為三類:圓形、方形和異形,絕大多數的橫板與中國式的直板都是圓型的.如圖,李明同學自制一塊乒乓球拍,正面是半徑為8 cm的⊙O,弧AB的長為4πcm,弓形ACB(陰影部分)粘貼膠皮,則膠皮面積為( 。
A. (32+48π)cm2 B. (16π﹣32)cm2 C. 64πcm2 D. (48π﹣32)cm2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com