【題目】閱讀與計算,請閱讀以下材料,并完成相應的問題.
角平分線分線段成比例定理,如圖1,在△ABC中,AD平分∠BAC,則.下面是這個定理的部分證明過程.
證明:如圖2,過C作CE∥DA.交BA的延長線于E.…
任務:
(1)請按照上面的證明思路,寫出該證明的剩余部分;
(2)如圖3,已知Rt△ABC中,AB=3,BC=4,∠ABC=90°,AD平分∠BAC,求△ABD的周長.
【答案】(1)見解析;(2)△ABD的周長為.
【解析】
(1)如圖2,過C作CE∥DA.交BA的延長線于E,利用平行線分線段成比例定理得到=
,利用平行線的性質得∠2=∠ACE,∠1=∠E,由∠1=∠2得∠ACE=∠E,所以AE=AC,于是有
=
;
(2)先利用勾股定理計算出AC=5,再利用(1)中的結論得到=
,即
=
,則可計算出BD=
,然后利用勾股定理計算出AD=
,從而可得到△ABD的周長.
(1)證明:如圖2,過C作CE∥DA.交BA的延長線于E,
∵CE∥AD,
∴=
,∠2=∠ACE,∠1=∠E,
∵∠1=∠2,
∴∠ACE=∠E,
∴AE=AC,
∴=
;
(2)解:如圖3,在RT中,∠ABC=90°
∵AB=3,BC=4
∴AC=5,
∵AD平分∠BAC,
∴=
,即
=
,
∴BD=BC=
,
在RT中,∠ABD=90°
∴AD==
=
,
∴△ABD的周長=+3+
=
.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=2 , AB=1.將矩形ABCD對折,得到折痕MN;沿著CM折疊,點D的對應點為E,ME與BC的交點為F;再沿著MP折疊,使得AM與EM重合,折痕為MP,此時點B的對應點為G.下列結論:①△CMP是直角三角形;②點C、E、G不在同一條直線上;③PC=
MP;④BP=
;⑤點F是△CMP外接圓的圓心,其中正確的個數為( 。
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=a(x-h)2+k的對稱軸是直線x=3,經過點(1,-2)和點(2,1).
(1)求函數的解析式;
(2)若m<n<3,A(m,y1)、B(n,y2)(m<n<3)都在該拋物線上,試比較y1與y2的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E、F分別在矩形ABCD的邊AD、AB上,連接EF,四邊形ABFE沿EF翻折能與四邊形重合,且
與ED相交,若
,則
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】佳佳文具店購進A,B兩種款式的筆袋,其中A種筆袋的單價比B種袋的單價低10%.已知店主購進A種筆袋用了810元,購進B種筆袋用了600元,且所購進的A種筆袋的數量比B種筆袋多20個.請問:文具店購進A,B兩種款式的筆袋各多少個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸交于點A,與y軸交點C,拋物線
過A,C兩點,與x軸交于另一點B.
(1)求拋物線的解析式.
(2)在直線AC上方的拋物線上有一動點E,連接BE,與直線AC相交于點F,當時,求
的值.
(3)點N是拋物線對稱軸上一點,在(2)的條件下,若點E位于對稱軸左側,在拋物線上是否存在一點M,使以M,N,E,B為頂點的四邊形是平行四邊形?若存在,直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+2x+k+1與x軸交與A、B兩點,與y軸交與點C(0,-3).
(1)求拋物線的對稱軸及k的值;
(2)求拋物線的對稱軸上存在一點P,使得PA+PC的值最小,求此時點P的坐標;
(3)點M是拋物線上的一動點,且在第三象限.
①當M點運動到何處時,△AMB的面積最大?求出△AMB的最大面積及此時點M的坐標.
②當M點運動到何處時,四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于一個三角形,設其三個內角度數分別為,
和
,若x,y,z滿足
,我們定義這個三角形為美好三角形.
(1)△ABC中,若,
,則△ABC (填”是”或”不是”)美好三角形;
(2)如圖,銳角△ABC是⊙O的內接三角形,,
,⊙O直徑為
,求證:△ABC為美好三角形;
(3)已知△ABC為美好三角形,,求
的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com