【題目】如圖,在□ABCD中,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連結AF,CE,則下列結論:①CF=AE;②OE=OF;③DE=BF;④圖中共有四對全等三角形.其中正確結論的個數是( )
A. 4 B. 3 C. 2 D. 1
科目:初中數學 來源: 題型:
【題目】畫圖并計算:已知線段AB=2 cm,延長線段AB至點C,使得2BC=AB,再反向延長AC至點D,使得AD=AC.
(1)準確地畫出圖形,并標出相應的字母;
(2)線段DC的中點是哪個?線段AB的長是線段DC長的幾分之幾?
(3)求出線段BD的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當∠BQD=30°時,求AP的長;
(2)當運動過程中線段ED的長是否發生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】八年級某班同學為了了解2012年某居委會家庭月均用水情況,隨機調查了該居委會部分家庭,并將調查數據進行如下調整:
月均用水量x(t) | 頻數(戶) | 頻率 |
0<x≤5 | 6 | 0.12 |
5<x≤10 | a | 0.24 |
10<x≤15 | 16 | 0.32 |
15<x≤20 | 10 | 0.20 |
20<x≤25 | 4 | 0.08 |
25<x≤30 | 2 | 0.04 |
請解答以下問題:
(1)頻數分布表中a= ,把頻數分布直方圖補充完整;
(2)求該居委會用水量不超過15t的家庭占被調查家庭總數的百分比;
(3)若該居委會有1000戶家庭,根據調查數據估計,該小區月均用水量超過20t的家庭大約有多少戶?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在四邊形ABCD中,AD∥BC,點E在BC邊的延長線上,CE=BC,連接AE,交CD邊于點F,且CF=DF.
(1)如圖1,求證:AD=BC;
(2)如圖2,連接BD、DE,若BD⊥DE,請判定四邊形ABCD的形狀,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時出發,沿同一路線勻速行駛,相向而行,快車到達乙地停留一段時間后,按原路原速返回甲地.慢車到達甲地比快車到達甲地早 小時,慢車速度是快車速度的一半,快、慢兩車到達甲地后停止行駛,兩車距各自出發地的路程y(千米)與所用時間x(小時)的函數圖象如圖所示,請結合圖象信息解答下列問題:
(1)請直接寫出快、慢兩車的速度;
(2)求快車返回過程中y(千米)與x(小時)的函數關系式;
(3)兩車出發后經過多長時間相距90千米的路程?直接寫出答案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平行四邊形ABCD中,點A1,A2,A3,A4和C1,C2,C3,C4分別AB和CD的五等分點,點B1,B2和D1,D2分別是BC和DA的三等分點,已知四邊形A4B2C4D2的面積為1,則平行四邊形ABCD面積為( 。
A. 2 B. C.
D. 15
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數學興趣小組以問卷調查的形式,隨機調查了某市部分出行市民的主要出行方式(參與問卷調查的市民都只從以下五個種類中選擇一類),并將調查結果繪制成如下不完整的統計圖.
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
根據以上信息,回答下列問題:
(1)參與本次問卷調查的市民共有 人,其中選擇B類的人數有 人;
(2)在扇形統計圖中,求A類對應扇形圓心角α的度數,并補全條形統計圖;
(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有這樣一道題:計算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=-,y=-2.甲同學把“x=-
”錯抄成“x=
”.但他計算的結果是正確的,請你分析這是什么原因.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com