【題目】已知,∠AOB . 求作:∠A′O′B′,使∠A′O′B′=∠AOB . 作法:
①以________為圓心,________為半徑畫弧.分別交OA , OB于點C , D .
②畫一條射線O′A′,以________為圓心,________長為半徑畫弧,交O′A′于點C′,
③以點________為圓心________長為半徑畫弧,與第2步中所畫的弧交于點D′.
④過點________畫射線O′B′,則∠A′O′B′=∠AOB .
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x﹣4與坐標軸相交于A、B、C三點,P是線段AB上一動點(端點除外),過P作PD∥AC,交BC于點D,連接CP.
(1)直接寫出A、B、C的坐標;
(2)求拋物線y=﹣x﹣4的對稱軸和頂點坐標;
(3)求△PCD面積的最大值,并判斷當△PCD的面積取最大值時,以PA、PD為鄰邊的平行四邊形是否為菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,點P沿線段AB從點A向點B運動,設AP=x.
(1)求AD的長;
(2)點P在運動過程中,是否存在以A、P、D為頂點的三角形與以P、C、B為頂點的三角形相似?若存在,求出x的值;若不存在,請說明理由;
(3)設△ADP與△PCB的外接圓的面積分別為S1、S2,若S=S1+S2,求S的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由于數學課上需要用到科學計算器,班級決定集體購買,班長小明先去文具店購買了2個A型計算器和3個B型計算器,共花費90元;后又買了1個A型計算器和2個B型計算器,共花費55元(每次兩種計算器的售價都不變)
(1)求A型計算器和B型計算器的售價分別是每個多少元?
(2)經統計,班內還需購買兩種計算器共40個,設購買A型計算器t個,所需總費用w元,請求出w關于t的函數關系式;
(3)要求:B型計算器的數量不少于A型計數器的2倍,請設計一種購買方案,使所需總費用最低.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,,垂足分別為E,F.
(1)求證:△BED≌△CFD;
(2)若∠A=90°,求證:四邊形DFAE是正方形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知A=﹣xy+x+1,B=4x+3y,
(1)當x=﹣2, y=0.6時,求A+2B的值;
(2)若代數式2A﹣B的結果與字母y的取值無關,求x的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,
為
內部的一條射線,
.
(1)如圖1,若平分
,
為
內部的一條射線,
,求
的度數;
(2)如圖2,若射線繞著
點從
開始以每秒
的速度順時針旋轉至
結束、
繞著
點從
開始以每秒
的速度逆時針旋轉至
結束,當一條射線到達終點時另一條射線也停止運動.若運動時間為
秒,當
時,求
的值;
(3)若射線繞著
點從
開始以每秒
的速度逆時針旋轉至
結束,在旋轉過程中,
平分
,試問
在某時間段內是否為定值;若不是,請說明理由;若是,請補全圖形,并直接寫出這個定值以及
相應所在的時間段.(本題中的角均為大于
且小于
的角)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點EF在直線l的同一側,要在直線l上找一點K,使KE與KF的距離之和最小,我們可以作出點E關于l的對稱點E′,連接FE′交直線L于點K,則點K即為所求.
(1)(實踐運用)拋物線y=ax2+bx+c經過點A(﹣1,0)、B(3,0)、C(0,﹣3).如圖2.
①求該拋物線的解析式;
②在拋物線的對稱軸上找一點P,使PA+PC的值最小,并求出此時點P的坐標及PA+PC的最小值.
(2)(知識拓展)在對稱軸上找一點Q,使|QA﹣QC|的值最大,并求出此時點Q的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com