精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,ADBC邊上的高,AE是∠BAC的平分線,∠EAD10°,∠B50°,求∠C的度數.

【答案】70°

【解析】

先利用ADBC邊上的高求出∠AED的度數,然后利用外角的性質求出∠BAE的度數,再根據角平分線的定義求出∠BAC的度數,最后利用三角形內角和定理即可求出最后答案.

ADBC邊上的高,∠EAD=10°,

∴∠AED=90°-10°=80°

∵∠AED△ABE的外角,∠B=50°

∴∠BAE=AED-B=80°-50°=30°,

AE是∠BAC的角平分線,

∴∠BAC=2BAE=60°,

△ABC中,∠BAC+B+C=180°

∴∠C=180°-B-BAC=180°-50°-60°=70°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形 ABCD ,A(﹣1,0)、B(0,﹣2),頂點 CD 在雙曲線 y=x>0), AD y 軸于點 E若點 E 恰好是 AD 的中點, k=_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一次函數x軸交于E-2,0),與y軸交于點Ax軸交于B(2,0),與y軸交于點D0,-4).它們的圖象如圖所示,請依據圖象回答以下問題:

1a  

2)確定的函數關系式

3)求ABC的面積

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,圓心為Pxy)的動圓經過點A(2,8),且與x軸相切于點B.

(1)x>0,y=5時,求x的值;

(2)x = 6時,求⊙P的半徑;

(3)y關于x的函數表達式,請判斷此函數圖象的形狀,并在圖②中畫出此函數的圖象(不必列表,畫草圖即可).

圖① 圖②

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC≌Rt△CED,點B、C、E在同一直線上,則結論:①AC=CD,②AC⊥CD,③BE=AB+DE,④AB∥ED,其中成立的有( 。

A. 僅① B. 僅①③ C. 僅①③④ D. ①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點分別為A(-1,4),B(-5,3),C(-3,2).

1)將△ABC向下平移6個單位后得到△A1B1C1,請在圖中畫出△A1B1C1,并寫出C1點坐標;

2)圖中點A212)與點A關于直線l成軸對稱,請在圖中畫出直線l△ABC關于直線l對稱的△A2B2C2,并寫出B2點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等腰RtABC中,C=90°,點O是AB的中點,邊AC的長為6,將一塊邊長足夠長的三角板的直角頂點放在O點處,將三角板繞著點O旋轉,始終保持三角板的直角邊與AC相交,交點為點D,另一條直角邊與BC相交,交點為點E,則等腰直角三角形ABC的邊被三角板覆蓋部分的兩條線段CD與CE長度之和為(  )

A. 7 B. 6 C. 5 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖,下列四個結論:

①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數).其中正確結論的個數是( 。

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數根.

其中正確結論的個數是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视