精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點A,CD,B在以O點為圓心,OA長為半徑的圓弧上, AC=CD=DB,ABOC于點E.求證:AE=CD

【答案】證明見解析

【解析】試題分析:連接OCOD,根據弦相等,得出它們所對的弧相等,得到=,再得到它們所對的圓心角相等,證明 得到

又因為 即可證明.

試題解析:證明:方法一:連接OC,OD

AC=CD=DB, =,

,

,

,

,

,

,

方法二:連接OC,OD

AC=CD=DB, =,

,

,

∵∠CAO=CAE+EAOAEC=AOC+EAO,

∴∠CAO=AEC,

中,

∴∠ACO=CAO,

∴∠ACO=AEC ,

, .

方法三:連接ADOC,OD

AC=DB, =,

∴∠ADC=DAB

CDAB,

∴∠AEC=DCO,

AC=CDAO=DO,

COAD,

∴∠ACO=DCO,

∴∠ACO=AECAC=AE,

AC=CDAE=CD

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】二次函數的部分圖象如圖所示,圖象過點,對稱軸為直線,下列結論:①;②;③一元二次方程的解是;④當時,,其中正確的結論有__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是水平放置的水管截面示意圖,已知水管的半徑為50cm,水面寬AB=80cm,則水深CD約為______cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A60°AB2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數y=﹣x+3的圖象與反比例函數yx0,k是常數)的圖象交于Aa2),B4b)兩點.

1)求反比例函數的表達式;

2)點C是第一象限內一點,連接AC,BC,使ACx軸,BCy軸,連接OA,OB.若點Py軸上,且OPA的面積與四邊形OACB的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,半圓D的直徑AB4,線段OA7,O為原點,點B在數軸的正半軸上運動,點B在數軸上所表示的數為m

1)當半圓D與數軸相切時,m 

2)半圓D與數軸有兩個公共點,設另一個公共點是C

直接寫出m的取值范圍是 

BC2時,求△AOB與半圓D的公共部分的面積.

3)當△AOB的內心、外心與某一個頂點在同一條直線上時,求tanAOB的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC內接于⊙O,∠ABC BAC的平分線交于點E,延長AE分別交BC O于點F, D,連接BD.

(1)求證: BD=DE.

(2)BD=6,AD=10,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中,,點在直線上,,點邊的中點,連接,射線于點,則的值為________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數y=ax2+2x+c的圖象經過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.

(1)求二次函數y=ax2+2x+c的表達式;

(2)連接PO,PC,并把POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標;

(3)當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视