【題目】如圖,是一個銳角三角形,分別以
、
向外作等邊三角形
、
,連接
、
交于點
,連接
.
(1)求證:
(2)求證:
【答案】(1)見解析;(2)見解析
【解析】
(1)過A作AM⊥CD于M,AN⊥BE于N,設AB與CD相交于點G.根據等邊三角形的性質得到AD=AB,AC=AE,∠BAD=∠CAE=60°,根據全等三角形的判定定理即可得△ACD≌△AEB,根據全等三角形的性質可得AM=AN,根據角平分線的判定定理即可得到∠DFA=∠AFE,再根據全等三角形的對應角相等和三角形內角和等于180°得到∠DFB=∠DAG=60°,即可得到結論;
(2)如圖,延長FB至K,使FK=DF,連DK,根據等邊三角形的性質和全等三角形的判定和性質定理即可得到結論.
(1)過A作AM⊥CD于M,AN⊥BE于N,設AB與CD相交于點G.
∵△ABD和△ACE為等邊三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠DAC=∠BAE=60°+∠BAC.
在△ACD和△AEB中,∵,
∴△ACD≌△AEB,
∴CD=BE,∠ADG=∠ABF,△ADC的面積=△ABE的面積,
∴CDAM=
BEAN,
∴AM=AN,
∴AF是∠DFE的平分線,
∴∠DFA=∠AFE.
∵∠ADG=∠ABF,∠AGD=∠BGF,
∴∠DFB=∠DAG=60°,
∴∠GFE=120°,
∴∠BFD=∠DFA=∠AFE.
(2)如圖,延長FB至K,使FK=DF,連接DK.
∵∠DFB=60°,
∴△DFK為等邊三角形,
∴DK=DF,∠KDF=∠K=60°,
∴∠K=∠DFA=60°.
∵∠ADB=60°,
∴∠KDB=∠FDA.
在△DBK和△DAF中,
∵∠K=∠DFA,DK=DF,∠KDB=∠FDA,
∴△DBK≌△DAF,
∴BK=AF.
∵DF=DK=FK=BK+BF,
∴DF=AF+BF,
又∵CD=DF+CF,
∴CD=AF+BF+CF.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C1,平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C1繞某一點旋轉可以得到△A2B2C2,請直接寫出旋轉中心的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),點C在第二象限,BC與y軸交于點D(0,c),若y軸平分∠BAC,則點C的坐標不能表示為( 。
A. (b+2a,2b) B. (﹣b﹣2c,2b)
C. (﹣b﹣c,﹣2a﹣2c) D. (a﹣c,﹣2a﹣2c)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=6cm,點P從點A出發,沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發沿BC方向以每秒1cm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′.設點Q運動的時間為t秒,若四邊形QPCP′為菱形,則t的值為( )
A. B. 2 C. 2
D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在某一個學校的運動俱樂部里面有三大筐數量相同的球,甲每次從第一個大筐中取出9個球;乙每次從第二個大筐中取出7個球;丙則是每次從第三個大筐中取出5個球.到后來甲、乙、丙三人都記不清各自取過多少次球了,于是管理人員查看發現第一個大筐中還剩下7個球,第二個大筐還剩下4個球,第三個大筐還剩下2個球,那么根據上述情況可以推知甲至少取了______次.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,四邊形是矩形,點
,點
,點
.以
點為中心,順時針旋轉矩形
,得到矩形
,點
的對應點分別為
,記旋轉角為
.
(1)如圖①,當時,求點
的坐標;
(2)如圖②,當點落在
的延長線上時,求點
的坐標;
(3)當點落在線段
上時,求點
的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F分別在BC,CD上,AE=AF,AC與EF相交于點G.下列結論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF.其中正確的是( 。
A. ①③B. ②④C. ①③④D. ②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com