精英家教網 > 初中數學 > 題目詳情

【題目】去年暑假,某旅行社組織了一個中學生夏令營活動,共有253名中學生報名參加,打算選租甲、乙兩種客車載客到指定地點.甲客車2輛、乙客車1輛可坐110人,甲客車3輛、乙客車2輛可坐180人.旅行前,旅行社每輛車安排了一名帶隊老師,因此一共安排了7名帶隊老師.

(1)甲、乙兩種客車各可坐多少人?

(2)請幫助旅行社設計租車方案.

【答案】1)甲、乙兩種客車分別可坐40人、30人;(2)有三種租車方案:租甲種客車5輛,租乙種客車2輛;租甲種客車6輛,租乙種客車1輛,租甲種客車7輛,租乙種客車0.

【解析】

1)設甲、乙兩種客車可分別坐x人,y人,利用甲客車2輛、乙客車1輛可坐110人;甲客車3輛、乙客車2輛可坐180人列兩個方程組成方程組,然后解方程組即可;

2)設租甲種客車a輛,則租乙種客車(7-a)輛,利用乘車人數不少于253+7列不等式得到40a+307-a)≥253+7,再解不等式得到a≥5,加上a≤7,于是可得到a=5、67,然后寫出三個方案.

1)設甲、乙兩種客車可分別坐x人,y人,
根據題意,得,

解得

答:甲、乙兩種客車分別可坐40人、30人;

2)設租甲種客車a輛,則租乙種客車(7-a)輛,

根據題意得40a+307-a)≥253+7,

解得a≥5,

所以5≤a≤7,

a為整數,

所以a=5、6、7,

有三種租車方案:租甲種客車5輛,租乙種客車2輛;租甲種客車6輛,租乙種客車1輛,租甲種客車7輛,租乙種客車0輛,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某地植物園從正門到側門有一條小路,甲徒步從正門出發勻速走向側門,乙與甲同時出發,騎自行車從側門勻速前往正門到達正門后休息0.2小時,然后按原路原速勻速返回側門,圖中折線分別表示甲、乙到側門的距離y(km)與出發時間x(h)之間的函數關系圖象,根據圖象信息解答下列問題:

(1)求甲到側門的距離yx之間的函數關系式;

(2)求甲、乙第一次相遇時到側門的距離.

(3)求甲、乙第二次相遇的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知在矩形ABCD中,AB=a,BC=b,點E是線段AD邊上的任意一點(不含端點A、D),連結BE、CE.

(1)若a=5,sin∠ACB= ,求b.
(2)若a=5,b=10當BE⊥AC時,求出此時AE的長.
(3)設AE=x,試探索點E在線段AD上運動過程中,使得△ABE與△BCE相似時,求a、b應滿足什么條件,并求出此時x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】填空,完成下列說理過程:

O是直線AB上一點,∠COD = 90°,OE平分∠BOC.

(1)如圖1,若∠ AOC = 50°,求∠DOE的度數;

解:∵O是直線AB上一點,

∴∠AOC +BOC =180°.

∵∠AOC =50°,

∴∠BOC =130°.

OE平分∠BOC(已知)

∴∠COE =BOC ( ).

∴∠COE = °.

∵∠COD = 90°,∠DOE =

∴∠DOE = °.

(2)將圖1中∠ COD按順時針方向轉至圖2所示的位置,OE仍然平分∠BOC.試猜想∠AOC與∠DOE的度數之間的關系為: .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A,O,B在同一直線上,射線OD和射線OE分別平分∠AOC和∠BOC.

1)當∠BOE=25°時,求∠AOD的度數

2)在圖中找出∠COD的補角,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ABACA=36°,AB的垂直平分線DEACD,交ABE.下列結論錯誤的是(   )

A. BD平分∠ABC B. BCD的周長等于ABBC

C. ADBDBC D. D是線段AC的中點

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知矩形ABCD,AB=6,BC=8,E,F分別是AB,BC的中點,AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一個不透明的盒子里,裝有四個分別標有數字﹣2,﹣1,1,4的小球,它們的形狀、大小、質地等完全相同,小強先從盒子里隨機取出一個小球,記下數字為a;放回盒子搖勻后,再由小華隨機取出一個小球,記下數字為b.
(1)用列表法或畫樹狀圖表示出(a,b)的所有可能出現的結果;
(2)求小強、小華各取一次小球所確定的點(a,b)落在二次函數y=x2的圖象上的概率;
(3)求小強、小華各取一次小球所確定的數a,b滿足直線y=ax+b經過一、二、三象限的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DG⊥AE,垂足為G,若DG=1,則AE的長為( )

A.
B.
C.4
D.8

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视