【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點,且OC∥BD,AD分別與BC,OC相交于點E,F,則下列結論:
①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )
A.②④⑤⑥
B.①③⑤⑥
C.②③④⑥
D.①③④⑤
【答案】D
【解析】解:①、∵AB是⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BD,②、∵∠AOC是⊙O的圓心角,∠AEC是⊙O的圓內部的角,
∴∠AOC≠∠AEC,③、∵OC∥BD,
∴∠OCB=∠DBC,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠OBC=∠DBC,
∴BC平分∠ABD,④、∵AB是⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BD,
∵OC∥BD,
∴∠AFO=90°,
∵點O為圓心,
∴AF=DF,⑤、由④有,AF=DF,
∵點O為AB中點,
∴OF是△ABD的中位線,
∴BD=2OF,⑥∵△CEF和△BED中,沒有相等的邊,
∴△CEF與△BED不全等,
故答案為:D
①、根據AB是⊙O的直徑得出結論;② 在△AOF和△CFE中,由于∠AOC是⊙O的圓心角,∠AEC是⊙O的圓內部的角,,可知∠AOC≠∠AEC;③、根據同圓的半徑相等及平行線的性質可以得出結論;④由垂徑定理得出結論;⑤由中位線定理可得出結論;⑥△CEF和△BED中,沒有相等的邊故得不出結論。
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績情況如圖所示:
(1)請填寫下表:
平均數 | 方差 | 中位數 | 命中9環及以上的次數 | |
甲 | 7 | 1.2 | 1 | |
乙 | 5.4 |
(2)請從下列四個不同的角度對這次測試結果進行分析:
①從平均數和方差相結合看;
②從平均數和中位數相結合看(分析誰的成績好些);
③從平均數和命中9環以上的次數相結合看(分析誰的成績好些);
④從折線圖上兩人射擊命中環數的走勢看(分析誰更有潛力).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點D為BC邊上一動點(不與點B,C重合),∠DAE=60°,過點B作BE∥AC交AE于點E.
(1)求證:△ADE是等邊三角形;
(2)當點D在何處時,AE⊥BE?指出點D的位置,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】延慶區由于生態質量良好、自然資源豐富,成為北京的生態涵養區,是其生態屏障和水源保護地.為降低空氣污染,919公交公司決定全部更換節能環保的燃氣公交車.計劃購買A型和B型兩種公交車共10輛,其中每臺的價格,年載客量如表:
A型 | B型 | |
價格(萬元/臺) | a | b |
年載客量(萬人/年) | 60 | 100 |
若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求a,b的值;
(2)如果該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次.請你設計一個方案,使得購車總費用最少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】當自然數的個位數分別為0,1,2,…,9時,
的個位數如表所示:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 | 1 | 4 | 9 | 6 | 5 | 6 | 9 | 4 | 1 |
| 0 | 1 | 8 | 7 | 4 | 5 | 6 | 3 | 2 | 9 |
| 0 | 1 | 6 | 1 | 6 | 5 | 6 | 1 | 6 | 1 |
······ |
在10,11,12,13這四個數中,當____________時,和數
能被5整除.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖為二次函數y=ax2+bx+c的圖象,在下列說法中:
①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④當x>1時,y隨著x的增大而增大.
正確的說法有 . (請寫出所有正確的序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點M是AB的中點,點P在MB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結MD和ME.設AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com