【題目】已知:如圖,點D是△ABC中BC邊上的中點,DE⊥AC,DF⊥AB,垂足分別是點EF,且BF=CE.
(1)求證:Rt△BDF≌Rt△CDE
(2)問:△ABC滿足什么條件時,四邊形AEDF是正方形,并說明理由.
【答案】(1)見解析;(2)當△ABC滿足∠A=90°(答案不唯一)時,四邊形AEDF是正方形,理由見解析
【解析】
(1)先利用HL判定Rt△BDF≌Rt△CDE即可;
(2)由已知可證明四邊形AEDF是矩形,由全等三角形的性質得出DE=DF,即可得出結論.
∵DE⊥AC,DF⊥AB,
∴∠BDF=∠CED=90°
∵點D是△ABC中BC邊上的中點,
∴BD=CD,在Rt△BDF和Rt△CDF中, ,
∴Rt△BDF≌Rt△CDE(HL);
(2)解:當△ABC滿足∠A=90°(答案不唯一)時,四邊形AEDF是正方形;理由如下:
∵∠BDF=∠CED=90°,∠A=90°,
∴四邊形AEDF是矩形,
∵Rt△BDF≌Rt△CDE,
∴DE=DF,
∴四邊形AEDF是正方形.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結論的個數是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系上,已知點 A(8,4),AB⊥y軸于 B,AC⊥x軸于 C,直線 y=x交 AB于 D.
(1)如圖 1,若 E 為 OD 延長線上一動點,當△BCE 的面積,S△BCE=20 時,過點 E 作 EF⊥AB于 F,點 G、H 分別為 AC、CB 上動點,求 FG+GH 的最小值及點 G 的坐標.
(2)如圖 2,直線 BC 與 DE 交于點 M,作直線 MN∥y 軸,在(1)的條件下,將△DEF 沿 DE方向平移 個單位得到△D′E′F′,在直線 MN 上是否存在點 P 使得△BF′P 為等腰三角形,若存在請直接寫出滿足條件的點 P 的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=-x+3與x軸、y軸分別交于A,B兩點,拋物線y=-x2+bx+c經過B點,且與x軸交于C,D兩點(點C在左側),且C(-3,0).
(1)求拋物線的解析式;
(2)平移直線AB,使得平移后的直線與拋物線分別交于點D,E,與y軸交于點F,連接CE,CF,求△CEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在梯形ABCD中,AB∥CD,CE平分∠BCD,CE⊥AD于E,DE=2AE.若△CED面積為1,則四邊形ABCE的面積為( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC和△DEF為等邊三角形,AB=DE,點B,C,D在x軸上,點A,E,F在y軸上,下面判斷正確的是( 。
A.△DEF是△ABC繞點O順時針旋轉90°得到的
B.△DEF是△ABC繞點O逆時針旋轉90°得到的
C.△DEF是△ABC繞點O順時針旋轉60°得到的
D.△DEF是△ABC繞點O順時針旋轉120°得到的
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)請按下列要求畫圖:
①將△ABC先向右平移4個單位長度、再向上平移2個單位長度,得到△A1B1C1,畫出△A1B1C1;
②△A2B2C2與△ABC關于原點O成中心對稱,畫出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2關于點M成中心對稱,請直接寫出對稱中心M點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】銅陵市義安區實施了城鄉居民基本醫療保險(簡稱“醫療保險”),辦法規定農村村民只要每人每年交納180元錢就可以加入醫療保險,住院時自己先墊付,出院同時就可得到按一定比例的報銷款,這項舉措惠及民生,吳斌與同學隨機調查了他們鎮的一些農民,根據收集到的數據繪制了以下的統計圖.
根據圖中信息,解答下列問題:
(1)本次調查了多少村民?被調查的村民中參加醫療保險,得到報銷款的有多少人?
(2)若該鎮有34000村民,請估算有多少人參加了醫療保險?要使兩年后參加醫療保險的人數增加到業務31460人,假設這兩年的年增長率相同,求年增長率?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com