精英家教網 > 初中數學 > 題目詳情

【題目】如圖,F1 , F2分別是雙曲線 的左、右焦點,過F1的直線l與雙曲線分別交于點A,B,且A(1, ),若△ABF2為等邊三角形,則△BF1F2的面積為(
A.1
B.
C.
D.2

【答案】C
【解析】解:根據雙曲線的定義,可得|AF1|﹣|AF2|=2a, ∵△ABF2是等邊三角形,即|AF2|=|AB|
∴|BF1|=2a
又∵|BF2|﹣|BF1|=2a,
∴|BF2|=|BF1|+2a=4a,
∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120°
∴|F1F2|2=|BF1|2+|BF2|2﹣2|BF1||BF2|cos120°
即4c2=4a2+16a2﹣2×2a×4a×(﹣ )=28a2 ,
解得c2=7a2
∴b2=c2﹣a2=6a2 , 所以雙曲線方程為 =1,
又A(1, ),在雙曲線上,所以 =1,解得a=
所以△BF1F2的面積為 = = ,
故選C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在矩形ABCD中,AB=3,AD=4,動點Q從點A出發,以每秒1個單位的速度,沿AB向點B移動;同時點P從點B出發,仍以每秒1個單位的速度,沿BC向點C移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤3),解答下列問題:

(1)設△QPD的面積為S,用含x的函數關系式表示S;當x為何值時,S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】樂平街上新開張了一家“好又多”超市,這個星期天,張明和媽媽去這家新開張的超市買東西,如圖反映了張明從家到超市的時間t(分鐘)與距離s(米)之間關系的一幅圖:①圖中反映了哪兩個變量之間的關系?超市離家多遠?②張明從家出發到達超市用了多少時間?從超市返回家花了多少時間?
③張明從家出發后20分鐘到30分鐘內可能在做什么?④張明從家到超市時的平均速度是多少?返回時的平均速度是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】今年我市某公司分兩次采購了一批大蒜,第一次花費40萬元,第二次花費60萬元.已知第一次采購時每噸大蒜的價格比去年的平均價格上漲了500元,第二次采購時每噸大蒜的價格比去年的平均價格下降了500元,第二次的采購數量是第一次采購數量的兩倍.
(1)試問去年每噸大蒜的平均價格是多少元?
(2)該公司可將大蒜加工成蒜粉或蒜片,若單獨加工成蒜粉,每天可加工8噸大蒜,每噸大蒜獲利1000元;若單獨加工成蒜片,每天可加工12噸大蒜,每噸大蒜獲利600元.由于出口需要,所有采購的大蒜必需在30天內加工完畢,且加工蒜粉的大蒜數量不少于加工蒜片的大蒜數量的一半,為獲得最大利潤,應將多少噸大蒜加工成蒜粉?最大利潤為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線E:y2=4x的準線為l,焦點為F,O為坐標原點.
(1)求過點O,F,且與l相切的圓的方程;
(2)過F的直線交拋物線E于A,B兩點,A關于x軸的對稱點為A′,求證:直線A′B過定點.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設函數f(x)= ﹣2+2alnx.
(1)討論函數f(x)的單調性;
(2)若f(x)在區間[ ,2]上的最小值為0,求實數a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設函數f(x)= ,D是由x軸和曲線y=f(x)及該曲線在點(1,0)處的切線所圍成的封閉區域,則z=x2+y2+2x+2y在D上的最小值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某網絡營銷部門為了統計某市網友2016年12月12日的網購情況,從該市當天參與網購的顧客中隨機抽查了男女各30人,統計其網購金額,得到如下頻率分布直方圖:

網購達人

非網購達人

合計

男性

30

女性

12

30

合計

60

若網購金額超過2千元的顧客稱為“網購達人”,網購金額不超過2千元的顧客稱為“非網購達人”.
(Ⅰ)若抽取的“網購達人”中女性占12人,請根據條件完成上面的2×2列聯表,并判斷是否有99%的把握認為“網購達人”與性別有關?
(Ⅱ)該營銷部門為了進一步了解這60名網友的購物體驗,從“非網購達人”、“網購達人”中用分層抽樣的方法確定12人,若需從這12人中隨機選取3人進行問卷調查.設ξ為選取的3人中“網購達人”的人數,求ξ的分布列和數學期望.
(參考公式: ,其中n=a+b+c+d)

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知f(x)=x2(1nx﹣a)+a,則下列結論中錯誤的是(
A.a>0,x>0,f(x)≥0
B.a>0,x>0,f(x)≤0
C.a>0,x>0,f(x)≥0
D.a>0,x>0,f(x)≤0

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视