【題目】如圖,在△ABC中,∠C=90°,∠B=30°,AD平分∠BAC,DE⊥AB于E,有下列結論:①DE=DC;②∠BDE=∠ADC;③AB=2AC;④圖中共有兩對全等三角形.其中正確的是:____________(填序號即可).
【答案】①②③
【解析】
根據題意可證△AED≌△ACD即可判斷①;再證△BED≌△AED即可判斷②③,最后證△BED≌△ACD即可判斷④.
∵AD平分∠BAC,∠B=30°,∠C=90°
∴∠EAD=∠CAD=30°
又DE⊥AB于E
∴∠DEA=∠BED=90°
在△AED和△ACD中
∴△AED≌△ACD(AAS)
∴DE=DC,∠EDA=∠CDA,AC=AE故①正確
在△BED和△AED中
∴△BED≌△AED(AAS)
∴∠BDE=∠ADE,BE=AE
∴∠BDE=∠CDA,故②正確
又BE+AE=AB
∴AB=2AE=2AC,故③正確
在△BED和△ACD中
∴△BED≌△ACD(SAS),共有3對全等三角形,故④錯誤
故答案為:①②③.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).
(1)求拋物線的函數表達式;
(2)若點P在拋物線上,且S△AOP=4SBOC,求點P的坐標;
(3)如圖b,設點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了了解同學們每月零花錢的數額,校園小記者隨機調查了本校部分同學,根據調查結果,繪制出了如下兩個尚不完整的統計圖表.
調查結果統計表
組別 | 分組(單位:元) | 人數 |
A | 0≤x<30 | 4 |
B | 30≤x<60 | 16 |
C | 60≤x<90 | a |
D | 90≤x<120 | b |
E | x≥120 | 2 |
請根據以上圖表,解答下列問題:
(1)填空:這次被調查的同學共有__人,a+b=__,m=___;
(2)求扇形統計圖中扇形C的圓心角度數;
(3)該校共有學生1000人,請估計每月零花錢的數額x在60≤x<120范圍的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場進行促銷,購物滿額即可獲得1次抽獎機會,抽獎袋中裝有紅色、黃色、白色三種除顏色外都相同的小球,從袋子中摸出1個球,紅色、黃色、白色分別代表一、二、三等獎.
(1)若小明獲得1次抽獎機會,小明中獎是______事件;(填隨機、必然、不可能)
(2)小明觀察一段時間后發現,平均每6個人中會有1人抽中一等獎、2人抽中二等獎,若袋中共有18個球,請你估算袋中白球的數量;
(3)在(2)的條件下,如果在抽獎袋中增加3個黃球,那么抽中一等獎的概率會怎樣變化?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,AD為等腰直角△ABC的高,點A和點C分別在正方形DEFG的邊DG和DE上,連接BG、AE.
(1)求證:BG=AE;
(2)將正方形DEFG繞點D旋轉,當線段EG經過點A時,(如圖②所示)
①求證:BG⊥GE;
②設DG與AB交于點M,若AG=6,AE=8,求DM的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD中,AB=2,以點A為圓心,AB為半徑的圓交邊BC于點E,連接DE、AC、AE.
(1)求證:△AED≌△DCA;
(2)若DE平分∠ADC且與⊙A相切于點E,求圖中陰影部分(扇形)的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某日的錢塘江觀潮信息如圖:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離s(千米)與時間t(分鐘)的函數關系用圖3表示,其中:“11:40時甲地‘交叉潮’的潮頭離乙地12千米”記為點A(0,12),點B坐標為(m,0),曲線BC可用二次函數s=t2+bt+c(b,c是常數)刻畫.
(1)求m的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時,小紅騎單車從乙地出發,沿江邊公路以0.48千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調轉車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為0.48千米/分,小紅逐漸落后.問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度v=v0+(t﹣30),v0是加速前的速度).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知含字母a,b的代數式是:.
(1)化簡代數式;
(2)小紅取a,b互為倒數的一對數值代入化簡的代數式中,計算后得代數式的值等于0.那么小紅所取的字母b的值等于多少?
(3)聰明的小剛從化簡的代數式中發現,只要字母b取一個固定的數,無論字母a取什么數,代數式的值恒為一個不變的數,那么小剛所取的字母b的值是多少呢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在下列橫線上用含有a,b的代數式表示相應圖形的面積.
⑴① ② ③ ④
⑵通過拼圖,你發現前三個圖形的面積與第四個圖形面積之間有什么關系? 請用數學式子表示: ;
⑶利用(2)的結論計算:
①
②
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com