【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE與FC會平行嗎?說明理由.
(2)AD與BC的位置關系如何?為什么?
(3)求證:BC平分∠DBE.
【答案】(1)平行,理由見解析;(2)平行,理由見解析;(3)證明見解析
【解析】試題分析:(1)證明∠1=∠CDB,利用同位角相等,兩直線平行即可證得;
(2)平行,根據平行線的性質可以證得∠A=∠CBE,然后利用平行線的判定方法即可證得;
(3)∠EBC=∠CBD,根據平行線的性質即可證得.
試題解析:(1)平行,理由如下:
∵∠2+∠CDB=180°,∠1+∠2=180°,
∴∠CDB=∠1,∴AE∥FC.
(2)平行,理由如下:
∵AE∥FC,
∴∠CDA+∠DAE=180°,
∵∠DAE=∠BCF∴∠CDA+∠BCF=180°,
∴AD∥BC.
(3)平分,理由如下:
∵AE∥FC,
∴∠EBC=∠BCF,
∵AD∥BC,
∴∠BCF=∠FDA,∠DBC=∠BDA,
又∵DA平分∠BDF,即∠FDA=∠BDA,
∴∠EBC=∠DBC,
∴BC平分∠DBE
科目:初中數學 來源: 題型:
【題目】 (2016浙江臺州第9題)小紅用次數最少的對折方法驗證了一條四邊形絲巾的形狀是正方形,她對折了( )
A.1次 B.2次 C.3次 D.4次
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們把三角形中最大內角與最小內角的度數差稱為該三角形的“內角正度值”.如果等腰三角形的“內角正度值”為45°,那么該等腰三角形的頂角等于_________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司打算至多用1200元印制廣告單.已知制版費50元,每印一張廣告單還需支付0.3元的印刷費,則該公司可印制的廣告單數量x(張)滿足的不等式為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,有四個同樣大小的直角三角形,兩條直角邊分別為a,b,斜邊為c,拼成一個正方形,中間留有一個小正方形.
(1)利用它們之間的面積關系,探索出關于a,b,c的等式.
(2)利用(1)中發現的直角三角形中兩直角邊a,b和斜邊c之間的關系,完成問題:如圖,在直角△ABC中,∠C=90°,且c=6,a+b=8,則△ABC的面積為__________
(3)如圖③,大正方形的邊長為m,小正方形的邊長為n,若用x、y表示四個矩形的兩邊長(x>y),觀察圖案,指出以下關系式:
(1) (2)x+y=m (3)x2﹣y2=mn
(4) 其中正確的有_________(填序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com