【題目】已知:拋物線y=-+bx+c經過A(-1,0)、B(5,0)兩點,頂點為P.
求:(1)求b,c的值;
(2)求△ABP的面積;
(3)若點C(,
)和點D(
,
)在該拋物線上,則當
時,請寫出
與
的大小關系.
【答案】(1)b=4,c=5;(2)27;(3)y1<y2.
【解析】
(1)利用交點式得到y=-(x+1)(x-5),然后展開即可得到b和c的值;
(2)先把拋物線的解析式配成頂點式得到P點坐標為(2,9),然后根據三角形面積公式計算即可;
(3)由于拋物線的對稱軸為直線x=2,開口向下,則根據二次函數的性質可確定y1與y2的大小關系.
(1)把點A(-1, 0)、B(5,0)分別代入y=-+bx+c, 得
,
解得.
(2)由(1)得拋物線解析式y=-+4x+5
∴y=-(x-2)2-9
∴P(2,9)
∵A(-1, 0)、B(5,0)
∴AB=6
∴S△ABF=.
(3)∵拋物線開口向下
∴在對稱軸直線x=2的左側y隨著x的增大而增大
∴<
.
科目:初中數學 來源: 題型:
【題目】用黑白棋子擺出下列一組圖形,根據規律可知.
(1)在第n個圖中,白棋共有 枚,黑棋共有 枚;
(2)在第幾個圖形中,白棋共有300枚;
(3)白棋的個數能否與黑棋的個數相等?若能,求出是第幾個圖形,若不能,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數m的取值范圍是( 。
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2﹣4ax+3a.
(Ⅰ)求該二次函數的對稱軸;
(Ⅱ)若該二次函數的圖象開口向下,當1≤x≤4時,y的最大值是2,且當1≤x≤4時,函數圖象的最高點為點P,最低點為點Q,求△OPQ的面積;
(Ⅲ)若對于該拋物線上的兩點P(x1,y1),Q(x2,y2),當t≤x1≤t+1,x2≥5時,均滿足y1≥y2,請結合圖象,直接寫出t的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數,a≠0)與x軸交于A,B兩點,頂點P(m,n).給出下列結論:①2a+c<0;②若(﹣,y1),(﹣
,y2),(
,y3)在拋物線上,則y1>y2>y3;③關于x的方程ax2+bx+k=0有實數解,則k>c﹣n;④當n=﹣
時,△ABP為等腰直角三角形.其中正確結論是________(填寫序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形ABCD中,E,F分別是AB,AD邊上的點,DE與CF交于點G.
(1)如圖1,若四邊形ABCD是矩形,且DE⊥CF.證明:=
;
(2)如圖2,若四邊形ABCD是平行四邊形,試探究:
當∠B與∠EGC滿足什么關系時,使得=
成立?并證明你的結論;
(3)如圖3,若BA=BC= 3,DA=DC= 4,∠BAD= 90°,DE⊥CF.求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標有數字3、4、5.從袋子中隨機取出一個小球,用小球上的數字作為十位的數字,然后放回;再取出一個小球,用小球上的數字作為個位上的數字,這樣組成一個兩位數,試問:按這種方法能組成哪些位數?十位上的數字與個位上的數字之和為9的兩位數的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線最高點D到墻面OB的水平距離為6m時,隧道最高點D距離地面10m.
(1)求該拋物線的函數關系式;
(2)一輛貨運汽車載一長方體集裝箱后寬為4m,高為6m,如果隧道內設雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com