【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數字1,2,3.
(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數字是奇數的概率為 .
(2)小明和小穎用轉盤做游戲,每人轉動轉盤一次,若兩次指針所指數字之和為奇數,則小明勝,否則小穎勝(指針指在分界線時重轉),這個游戲對雙方公平嗎?請用樹狀圖或者列表法說明理由.
【答案】(1);(2)不公平,理由見解析
【解析】
(1)由標有數字1、2、3的3個轉盤中,奇數的有1、3這2個,利用概率公式計算可得;
(2)根據題意列表得出所有等可能的情況,得出這兩個數字之和是奇數與偶數的情況,再根據概率公式即可得出答案.
解:(1)∵在標有數字1、2、3的3個轉盤中,奇數的有1、3這2個,
∴指針所指扇形中的數字是奇數的概率為,
故答案為:;
(2)不公平,理由如下:
列表如下:
1 | 2 | 3 | |
1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 |
3 | 4 | 5 | 6 |
由表可知,所有等可能的情況數為9種,其中兩次指針所指數字之和為奇數的有4種結果,和為偶數的有5種結果,
所以小明獲勝的概率為,小穎獲勝的概率為
,
由≠
知此游戲不公平.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經過點A,D的⊙O分別交AB,AC于點E,F,連接OF交AD于點G.
(1)求證:BC是⊙O的切線;
(2)設AB=x,AF=y,試用含x,y的代數式表示線段AD的長;
(3)若BE=8,sinB=,求DG的長,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經過A(﹣1,0),B(3,0)兩點,交y軸于點C,點D為拋物線的頂點,連接BD,點H為BD的中點.請解答下列問題:
(1)求拋物線的解析式及頂點D的坐標;
(2)在y軸上找一點P,使PD+PH的值最小,則PD+PH的最小值為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB是⊙O的弦,點P是優弧AB上的一個動點,連接AP,過點A作AP的垂線,交PB的延長線于點C.
(1)如圖1,AC與⊙O相交于點D,過點D作⊙O的切線,交PC于點E,若DE∥AB,求證:PA=PB;
(2)如圖2,已知⊙O的半徑為2,AB=2.
①當點P在優弧AB上運動時,∠C的度數為 °;
②當點P在優弧AB上運動時,△ABP的面積隨之變化,求△ABP面積的最大值;
③當點P在優弧AB上運動時,△ABC的面積隨之變化,△ABC的面積的最大值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P從出發,沿所示方向運動,每當碰到長方形OABC的邊時會進行反彈,反彈時反射角等于入射角,當點P第2018次碰到長方形的邊時,點P的坐標為______.
【答案】
【解析】
根據反射角與入射角的定義作出圖形;由圖可知,每6次反彈為一個循環組依次循環,用2018除以6,根據商和余數的情況確定所對應的點的坐標即可.
解:如圖所示:經過6次反彈后動點回到出發點,
,
當點P第2018次碰到矩形的邊時為第337個循環組的第2次反彈,
點P的坐標為
.
故答案為:.
【點睛】
此題主要考查了點的坐標的規律,作出圖形,觀察出每6次反彈為一個循環組依次循環是解題的關鍵.
【題型】填空題
【結束】
15
【題目】為了保護環境,某公交公司決定購買A、B兩種型號的全新混合動力公交車共10輛,其中A種型號每輛價格為a萬元,每年節省油量為萬升;B種型號每輛價格為b萬元,每年節省油量為
萬升:經調查,購買一輛A型車比購買一輛B型車多20萬元,購買2輛A型車比購買3輛B型車少60萬元.
請求出a和b;
若購買這批混合動力公交車每年能節省
萬升汽油,求購買這批混合動力公交車需要多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EF⊥BE交CD于F.
(1)求證:△ABE∽△DEF;
(2)求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:反比例函數的圖象與一次函數
的圖象交于
、
兩點,其中
點坐標為
.
(1)求反比例函數與一次函數的表達式;
(2)觀察圖象,直接寫出當時,自變量
的取值范圍;
(3)一次函數的圖象與軸交于點
,點
是反比例函數圖象上的一個動點,若
,求此時
點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線
(1)若求該拋物線與x軸的交點坐標;
(2)若,是否存在實數
,使得相應的y=1,若有,請指明有幾個并證明你的結論,若沒有,闡述理由。
(3)若且拋物線在
區間上的最小值是-3,求b的值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經過
,
兩點,且與
軸交于點
,拋物線與直線
交于
,
兩點.
(1)求拋物線的解析式;
(2)坐標軸上是否存在一點,使得
是以
為底邊的等腰三角形?若存在,請直接寫出點
的坐標;若不存在,說明理由.
(3)點在
軸上且位于點
的左側,若以
,
,
為頂點的三角形與
相似,求點
的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com