【題目】課本中有一個例題:
有一個窗戶形狀如圖1,上部是一個半圓,下部是一個矩形,如果制作窗框的材料總長為6m,如何設計這個窗戶,使透光面積最大?
這個例題的答案是:當窗戶半圓的半徑約為0.35m時,透光面積最大值約為1.05m2 .
我們如果改變這個窗戶的形狀,上部改為由兩個正方形組成的矩形,如圖2,材料總長仍為6m,利用圖3,解答下列問題:
(1)若AB為1m,求此時窗戶的透光面積?
(2)與課本中的例題比較,改變窗戶形狀后,窗戶透光面積的最大值有沒有變大?請通過計算說明.
科目:初中數學 來源: 題型:
【題目】某校為了進一步改進本校七年級數學教學,提高學生學習數學的興趣,校教務處在七年級所有班級中,每班隨機抽取了6名學生,并對他們的數學學習情況進行了問卷調查.我們從所調查的題目中,特別把學生對數學學習喜歡程度的回答(喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項)結果進行了統計,現將統計結果繪制成如下兩幅不完整的統計圖.
請你根據以上提供的信息,解答下列問題:
(1)補全上面的條形統計圖和扇形統計圖;
(2)所抽取學生對數學學習喜歡程度的眾數是;
(3)若該校七年級共有960名學生,請你估算該年級學生中對數學學習“不太喜歡”的有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D、E分別是△ABC的邊AB、BC上的點,且DE∥AC,AE、CD相交于點O,若S△DOE:S△COA=1:25,則S△BDE與S△CDE的比是( )
A.1:3
B.1:4
C.1:5
D.1:25
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點M是BC的中點,作正方形MNPQ,使點A、C分別在MQ和MN上,連接AN、BQ.
(1)直接寫出線段AN和BQ的數量關系是 .
(2)將正方形MNPQ繞點M逆時針方向旋轉θ(0°<θ≤360°)
①判斷(1)的結論是否成立?請利用圖2證明你的結論;
②若BC=MN=6,當θ(0°<θ≤360°)為何值時,AN取得最大值,請畫出此時的圖形,并直接寫出AQ的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=2,E是AB的中點,直線l平行于直線EC,且直線l與直線EC之間的距離為2,點F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點A恰好落在直線l上,則DF的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把一張矩形紙片ABCD沿對角線AC折疊,點B的對應點為B′,AB′與DC相交于點E,則下列結論一定正確的是( )
A.∠DAB′=∠CAB′
B.∠ACD=∠B′CD
C.AD=AE
D.AE=CE
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明上學途中要經過A,B兩地,由于A,B兩地之間有一片草坪,所以需要走路線AC,CB,如圖,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的長.(結果保留小數點后一位)
參考數據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, 取1.414.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+
x+
與x軸交于A,B兩點,與y軸交于點C.若點P是線段AC上方的拋物線上一動點,當△ACP的面積取得最大值時,點P的坐標是( )
A.(4,3)
B.(5, )
C.(4, )
D.(5,3)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com