【題目】如圖,△ABC內接于⊙O,BD為⊙O的直徑,BD與AC相交于點H,AC的延長線與過點B的直線相交于點E,且∠A=∠EBC.
(1)求證:BE是⊙O的切線;
(2)已知CG∥EB,且CG與BD、BA分別相交于點F、G,若BGBA=48,FG=,DF=2BF,求AH的值.
【答案】(1)證明見解析;(2).
【解析】
(1)欲證明BE是⊙O的切線,只要證明∠EBD=90°.
(2)由△ABC∽△CBG,得求出BC,再由△BFC∽△BCD,得
=BFBD求出BF,CF,CG,GB,再通過計算發現CG=AG,進而可以證明CH=CB,求出AC即可解決問題.
(1)連接CD,
∵BD是直徑,
∴∠BCD=90°,即∠D+∠CBD=90°,
∵∠A=∠D,∠A=∠EBC,
∴∠CBD+∠EBC=90°,
∴BE⊥BD,
∴BE是⊙O切線.
(2)∵CG∥EB,
∴∠BCG=∠EBC,
∴∠A=∠BCG,
∵∠CBG=∠ABC
∴△ABC∽△CBG,
∴,即
=BGBA=48,
∴BC=,
∵CG∥EB,
∴CF⊥BD,
∴△BFC∽△BCD,
∴=BFBD,
∵DF=2BF,
∴BF=4,
在RT△BCF中,CF==
,
∴CG=CF+FG=,
在RT△BFG中,BG==
,
∵BGBA=48,
∴BA=,即AG=
,
∴CG=AG,
∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,
∴∠CHF=∠CBF,∴CH=CB=,
∵△ABC∽△CBG,
∴,
∴AC==
,
∴AH=AC﹣CH=.
科目:初中數學 來源: 題型:
【題目】(1)(觀察發現)如圖 1,△ABC 和△CDE 都是等邊三角形,且點 B、C、E 在一條直線上,連接 BD 和AE,BD、AE 相交于點 P,則線段 BD 與 AE 的數量關系是 ,BD 與 AE 相交構成的銳角的度數是 .(只要求寫出結論,不必說明理由)
(2)(深入探究 1)如圖 2,△ABC 和△CDE 都是等邊三角形,連接 BD 和 AE,BD、AE 相交于點 P,猜想線段 BD 與 AE 的數量關系,以及 BD 與 AE 相交構成的銳角的度數. 請說明理由 結論:
理由:_______________________
(3)(深入探究 2)如圖 3,△ABC 和△CDE 都是等腰直角三角形,且∠ACB=∠DCE=90°,連接 AD、BE,Q 為 AD 中點,連接 QC 并延長交 BE 于 K. 求證:QK⊥BE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,D為AB的中點,F為BC上一點,DF∥AC,延長FD至E,且DE=DF,聯結AE、AF
(1)求證:∠E=∠C;
(2)如果DF平分∠AFB,求證:AC⊥AB
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(11·貴港)如圖所示,正方形OEFG和正方形ABCD是位似圖形,點F的坐標
為(-1,1),點C的坐標為(-4,2),則這兩個正方形位似中心的坐標是 _ ▲ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處米的點D(點D與樓底C在同一水平面上)出發,沿斜面坡度為i=1:
的斜坡DB前進30米到達點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數據:sin53°≈0.8,cos53°≈0.6,tan53°≈
,計算結果用根號表示,不取近似值).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,AD⊥BC于點D,點E為AC中點且BE平分∠ABD,連接BE交AD于點F,且BF=AC,過點D作DG∥AB,交AC于點G.
求證:
(1)∠BAD=2∠DAC
(2)EF=EG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形中,將點
翻折到對角線
上的點
處,折痕
交
于點
.將點
翻折到對角線
上的點
處,折痕
交
于點
.
求證:四邊形
為平行四邊形;
若四邊形
為菱形,且
,求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,為等邊三角形,點
為直線
上一動點(點
不與
、
重合).以
為邊作菱形
,使
,連接
.
如圖
,當點
在邊
上時,
①求證:;②請直接判斷結論
是否成立;
如圖
,當點
在邊
的延長線上時,其他條件不變,結論
是否成立?請寫出
、
、
之間存在的數量關系,并寫出證明過程;
如圖
,當點
在邊
的延長線上時,且點
、
分別在直線
的異側,其他條件不變,請補全圖形,并直接寫出
、
、
之間存在的等量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,矩形ABCD中,AB=12cm,AD=5cm,E是DC上一點(點E不與D、C重合)連接AE,以AE所在的直線為折痕,折疊紙片,點D的對應點為D′,點F為線段BC上一點,連接EF,以EF所在的直線為折痕折疊紙片,使點C的對應點C′落在直線ED′上,若CF=4時,DE=_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com