精英家教網 > 初中數學 > 題目詳情

【題目】為了傳承中華優秀傳統文化,培養學生自主、團結協作能力,某校推出了以下四個項目供學生選擇:A.家鄉導游:B.藝術暢游:C.體育世界:D.博物旅行.學校規定:每個學生都必須報名且只能選擇其中一個項目,學校對某班學生選擇的項目情況進行了統計,并繪制了如下兩幅不完整的統計圖,請結合統計圖中的信息,解答下列問題:

(1)求該班學生總人數;

(2)計算B項目所在扇形的圓心角的度數;

(3)將條形統計圖補充完整;

(4)該校有1200名學生,請你估計選擇“博物旅行”項目學生的人數.

【答案】140;(2;(3)見解析;(4120人.

【解析】

1)利用A項目的頻數除以它所占的百分比得到調查的總人數;
2)用360°乘以B項目所占的百分比即可求出B項目所在扇形的圓心角的度數;

3)用總人數減去其它項目的人數求出C項目的人數,然后補全條形統計圖;

4)用總人數乘以博物旅行所占的百分比即可得到答案.

解:(1)調查的總人數有:12÷30%=40(人),
故答案為:40

2B項目所在扇形的圓心角的度數是;

3C項目的人數為:40-12-14-4=10(人),
補條型統計圖如下:

4人;

估計選擇“博物旅行”項目學生的人數為1200人.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知正比例函數和反比例函數的圖像都經過點,且為雙曲線上的一點,為坐標平面上一動點,垂直于軸,垂直于軸,垂足分別是、.

1)寫出正比例函數和反比例函數的關系式.

2)當點在直線上運動時,直線上是否存在這樣的點,使得的面積相等?如果存在,請求出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 滿足社區居民健身的需要,市政府準備采購若干套健身器材免費提供給社區經考察,公司兩種型號的健身器可供選擇.

(1)松公司2015年每套健身器的售價為萬元,經過連續兩年降價,2017年每售價 萬元,求每型健身器年平均下降 ;

(2)2017年市政府經過招標,決定年內采購安裝松公司兩種型號的健身器材,采購專項費總計不超過萬元,采購合同規定:每套健身器售價為萬元,每套健身器售價 萬元.

型健身器最多可購買多少套?

安裝完成后,若每套型和健身器一年的養護費分別是購買價的 .政府計劃支出 萬元進行養護.問該計劃支出能否滿足一年的養護需要?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點C在直線b上,直線aAB于點D,交AC于點E,若∠1=145°,則∠2的度數是( )

A.30°B.35°C.40°D.45°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某數學活動小組在一次活動中,對一個數學問題做了如下研究:

(問題發現)(1)如圖①,在等邊三角形ABC中,點MBC邊上任意一點,連接AM,以AM為邊作等邊三角形AMN,連接CN,則∠ABC和∠ACN的數量關系為   

(變式探究)(2)如圖②,在等腰三角形ABC中,ABBC,點MBC邊上任意一點(不含端點BC,連接AM,以AM為邊作等腰三角形AMN,使∠AMN=∠ABC,AMMN,連接CN,試探究∠ABC與∠ACN的數量關系,并說明理由;

(解決問題)(3)如圖③,在正方形ADBC中,點MBC邊上一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中心,連接CN,ABAE,若正方形ADBC的邊長為8,CN,直接寫出正方形AMEF的邊長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數yax2bx4的圖象與x軸交于點B(2,0)、點C(8,0)兩點,與y軸交于點A

(1)求二次函數的表達式;

(2)連接ACAB,若點N在線段BC上運動(不與點BC重合),過點NNMAC,交AB于點M,當△AMN面積最大時,求N點的坐標;

(3)連接OM,在(2)的結論下,線段AC上有一動點P,連接PM,求PMPC的值最小時,點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABC是等邊三角形,點D為平面內一點,連接DB、DC,∠BDC120°.

1)如圖,當點DBC下方時,連接AD,延長DC到點E,使CEBD,連接AE

求證:△ABD≌△ACE

如圖,過點AAFDE于點F,直接寫出線段AF、BDDC間的數量關系;

2)若AB2DC6,直接寫出點A到直線BD的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數關系,其部分圖象如圖所示.

(1)求y關于x的函數關系式;(不需要寫定義域)

(2)已知當油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機發現離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=x2+2bx+12b(b為常數)

1)若點(25)在該拋物線上,求b的值;

2)若該拋物線的頂點坐標是(mn),求n關于m的函數解析式;

3)若拋物線與x軸交點之間的距離大于4,求b的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视