【題目】已知△ABC是等邊三角形,點D為平面內一點,連接DB、DC,∠BDC=120°.
(1)如圖①,當點D在BC下方時,連接AD,延長DC到點E,使CE=BD,連接AE.
①求證:△ABD≌△ACE;
②如圖②,過點A作AF⊥DE于點F,直接寫出線段AF、BD、DC間的數量關系;
(2)若AB=2,DC=6,直接寫出點A到直線BD的距離.
【答案】(1)①證明見解析;②AF=(CD+BD);(2)4
或
【解析】
(1)①由等邊三角形的性質可得AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,由四邊形的內角和定理可得∠ACE=∠ABD,由“SAS”可證△ABD≌△ACE;
②由全等三角形的性質可得AD=AE,∠BAD=∠CAE,可證△ADE是等邊三角形,可得AF=DF=
AD,即可求解;
(2)分兩種情況討論,當點D在BC下方時,利用全等三角形的性質和勾股定理可求點A到直線BD的距離;當點D在BC上方時,過點C作CH⊥BD交BD延長線于H,過點D作DF⊥BC于F,過點A作AN⊥BD,交BD的延長線于N,利用面積法可求DF的長,由三角函數可求解.
證明:(1)①∵△ABC是等邊三角形,
∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,
∵∠ABD+∠BDC+∠ACD+∠BAC=360°,∠BDC=120°,
∴∠ABD+∠ACD=180°,
∵∠ACE+∠ACD=180°,
∴∠ACE=∠ABD,
又∵AB=AC,BD=CE,
∴△ABD≌△ACE(SAS);
②∵△ABD≌△ACE,
∴AD=AE,∠BAD=∠CAE,
∴∠DAC+∠CAE=∠DAC+∠BAD=∠BAC=60°,
∴∠DAE=60°,
∴△ADE是等邊三角形,
∴AD=ED,
∵AF⊥DE,AD=AE,
∴DF=DE=
AD,∠DAF=30°,
∴AF=DF=
AD,
∵DE=CD+CE=CD+BD,
∴AF=AD=
(CD+BD);
(2)如圖②,若點D在BC下方時,
∵△ABD≌△ACE,
∴點A到直線BD的距離=點A到直線CE的距離,
設DF=x,則AF=x,
∵AC2=AF2+CF2,
∴52=3x2+(6﹣x)2,
∴x1=4,x2=﹣1(舍去),
∴AF=4,
如圖3,若點D在BC上方時,過點C作CH⊥BD交BD延長線于H,過點D作DF⊥BC于F,過點A作AN⊥BD,交BD的延長線于N,
∵∠BDC=120°,
∴∠CDH=60°,
∵CH⊥BD,
∴∠DCH=30°,CD=6,
∴DH=3,CH=DH=3
,
∵BH==
=5,
∴BD=BH﹣DH=2,
∵S△BDC=BD×CH=
×BC×DF,
∴2×3=2
×DF,
∴DF=,
∵∠BDC=120°,
∴∠DBC+∠DCB=60°,
又∵∠ABD+∠DBC=60°,
∴∠ABD=∠DCB,
∴sin∠ABD=sin∠DCB=,
∴,
∴AN=,
綜上所述:點A到直線BD的距離為4或
.
科目:初中數學 來源: 題型:
【題目】已知正n邊形的周長為60,邊長為a
(1)當n=3時,請直接寫出a的值;
(2)把正n邊形的周長與邊數同時增加7后,假設得到的仍是正多邊形,它的邊數為n+7,周長為67,邊長為b.有人分別取n等于3,20,120,再求出相應的a與b,然后斷言:“無論n取任何大于2的正整數,a與b一定不相等.”你認為這種說法對嗎?若不對,請求出不符合這一說法的n的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象與反比例函數
的圖象交于點
和點C,與y軸交于點B,
的面積是6.
(1)求一次函數與反比例函數的表達式;(2)當時,比較
與
的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了傳承中華優秀傳統文化,培養學生自主、團結協作能力,某校推出了以下四個項目供學生選擇:A.家鄉導游:B.藝術暢游:C.體育世界:D.博物旅行.學校規定:每個學生都必須報名且只能選擇其中一個項目,學校對某班學生選擇的項目情況進行了統計,并繪制了如下兩幅不完整的統計圖,請結合統計圖中的信息,解答下列問題:
(1)求該班學生總人數;
(2)計算B項目所在扇形的圓心角的度數;
(3)將條形統計圖補充完整;
(4)該校有1200名學生,請你估計選擇“博物旅行”項目學生的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,CO是AB邊上的中線,∠AOC=60°,AB=2,點P是直線OC上的一個動點,則當△PAB為直角三角形時,邊AP的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年9月30日,由著名導演李仁港執導的電影《攀登者》在各大影院上映后,好評不斷,小亮和小麗都想去觀看這部電影,但是只有一張電影票,于是他們決定采用模球的辦法決定勝負,獲勝者去看電影,游戲規則如下:在一個不透明的袋子中裝有編號1-4的四個球(除編號外都相同),從中隨機摸出一個球,記下數字后放回,再從中摸出一個球,記下數字,若兩次數字之和大于5,則小亮獲勝,若兩次數字之和小于5,則小麗獲勝.
(1)請用列表或畫樹狀圖的方法表示出隨機摸球所有可能的結果;
(2)分別求出小亮和小麗獲勝的概率,并判斷這種游戲規則對兩人公平嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點是坐標原點,點
是反比例函數
圖像上一點,點
在
軸上,
,四邊形
是平行四邊形,
交反比例函數
圖像于點
.
(1)平行四邊形的面積等于______;
(2)設點橫坐標為
,試用
表示點
的坐標;(要有推理和計算過程)
(3)求的值;
(4)求的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某街道組織志愿者活動,選派志愿者到小區服務.若每一個小區安排4人,那么還剩下78人;若每個小區安排8人,那么最后一個小區不足8人,但不少于4人.求這個街道共選派了多少名志愿者?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列計算:①;②(x﹣2y)2=x2﹣4y2;③(﹣a)4a3=﹣a7;④x10÷x5=x2,其中錯誤的個數是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com