精英家教網 > 初中數學 > 題目詳情

【題目】已知△ABC是等邊三角形,點D為平面內一點,連接DBDC,∠BDC120°.

1)如圖,當點DBC下方時,連接AD,延長DC到點E,使CEBD,連接AE

求證:△ABD≌△ACE;

如圖,過點AAFDE于點F,直接寫出線段AFBD、DC間的數量關系;

2)若AB2,DC6,直接寫出點A到直線BD的距離.

【答案】1證明見解析;AFCD+BD);(24

【解析】

1由等邊三角形的性質可得ABACBC,∠ABC=∠ACB=∠BAC60°,由四邊形的內角和定理可得∠ACE=∠ABD,由“SAS”可證△ABD≌△ACE

由全等三角形的性質可得ADAE,∠BAD=∠CAE,可證△ADE是等邊三角形,可得AFDFAD,即可求解;

2)分兩種情況討論,當點DBC下方時,利用全等三角形的性質和勾股定理可求點A到直線BD的距離;當點DBC上方時,過點CCHBDBD延長線于H,過點DDFBCF,過點AANBD,交BD的延長線于N,利用面積法可求DF的長,由三角函數可求解.

證明:(1)①∵△ABC是等邊三角形,

ABACBC,∠ABC=∠ACB=∠BAC60°,

∵∠ABD+BDC+ACD+BAC360°,∠BDC120°,

∴∠ABD+ACD180°,

∵∠ACE+ACD180°,

∴∠ACE=∠ABD,

又∵ABACBDCE,

∴△ABD≌△ACESAS);

∵△ABD≌△ACE,

ADAE,∠BAD=∠CAE,

∴∠DAC+CAE=∠DAC+BAD=∠BAC60°,

∴∠DAE60°,

∴△ADE是等邊三角形,

ADED,

AFDE,ADAE,

DFDEAD,∠DAF30°,

AFDFAD,

DECD+CECD+BD,

AFADCD+BD);

2)如圖,若點DBC下方時,

∵△ABD≌△ACE,

∴點A到直線BD的距離=點A到直線CE的距離,

DFx,則AFx,

AC2AF2+CF2,

523x2+6x2,

x14,x2=﹣1(舍去),

AF4,

如圖3,若點DBC上方時,過點CCHBDBD延長線于H,過點DDFBCF,過點AANBD,交BD的延長線于N,

∵∠BDC120°,

∴∠CDH60°,

CHBD,

∴∠DCH30°,CD6

DH3,CHDH3,

BH5,

BDBHDH2,

SBDCBD×CH×BC×DF,

2×32×DF

DF,

∵∠BDC120°,

∴∠DBC+DCB60°,

又∵∠ABD+DBC60°,

∴∠ABD=∠DCB,

sinABDsinDCB,

,

AN,

綜上所述:點A到直線BD的距離為4

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知正n邊形的周長為60,邊長為a

(1)當n=3時,請直接寫出a的值;

(2)把正n邊形的周長與邊數同時增加7后,假設得到的仍是正多邊形,它的邊數為n+7,周長為67,邊長為b.有人分別取n等于3,20,120,再求出相應的ab,然后斷言:“無論n取任何大于2的正整數,ab一定不相等.”你認為這種說法對嗎?若不對,請求出不符合這一說法的n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數的圖象與反比例函數的圖象交于點和點C,與y軸交于點B,的面積是6.

1)求一次函數與反比例函數的表達式;(2)當時,比較的大小.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了傳承中華優秀傳統文化,培養學生自主、團結協作能力,某校推出了以下四個項目供學生選擇:A.家鄉導游:B.藝術暢游:C.體育世界:D.博物旅行.學校規定:每個學生都必須報名且只能選擇其中一個項目,學校對某班學生選擇的項目情況進行了統計,并繪制了如下兩幅不完整的統計圖,請結合統計圖中的信息,解答下列問題:

(1)求該班學生總人數;

(2)計算B項目所在扇形的圓心角的度數;

(3)將條形統計圖補充完整;

(4)該校有1200名學生,請你估計選擇“博物旅行”項目學生的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,COAB邊上的中線,∠AOC60°,AB2,點P是直線OC上的一個動點,則當△PAB為直角三角形時,邊AP的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2019930日,由著名導演李仁港執導的電影《攀登者》在各大影院上映后,好評不斷,小亮和小麗都想去觀看這部電影,但是只有一張電影票,于是他們決定采用模球的辦法決定勝負,獲勝者去看電影,游戲規則如下:在一個不透明的袋子中裝有編號1-4的四個球(除編號外都相同),從中隨機摸出一個球,記下數字后放回,再從中摸出一個球,記下數字,若兩次數字之和大于5,則小亮獲勝,若兩次數字之和小于5,則小麗獲勝.

1)請用列表或畫樹狀圖的方法表示出隨機摸球所有可能的結果;

2)分別求出小亮和小麗獲勝的概率,并判斷這種游戲規則對兩人公平嗎?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點是坐標原點,點是反比例函數圖像上一點,點軸上,,四邊形是平行四邊形,交反比例函數圖像于點

1)平行四邊形的面積等于______

2)設點橫坐標為,試用表示點的坐標;(要有推理和計算過程)

3)求的值;

4)求的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某街道組織志愿者活動,選派志愿者到小區服務.若每一個小區安排4人,那么還剩下78人;若每個小區安排8人,那么最后一個小區不足8人,但不少于4人.求這個街道共選派了多少名志愿者?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列計算:①;②(x2y2x24y2;③(﹣a4a3=﹣a7;④x10÷x5x2,其中錯誤的個數是(  )

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视