精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在正方形ABCD中,點E、F分別在邊BCCD上,且BECF,連接AEBF,其相交于點G,將△BCF沿BF翻折得到△BCF,延長FC′交BA延長線于點H

1求證:AEBF;

猜想AEBF的位置關系,并證明你的結論;

2)若AB3,EC2BE,求BH的長.

【答案】1詳見解析;AEBF,證明詳見解析;(2BH=5

【解析】

1)①根據正方形的性質得到BA=BC,∠ABC=BCD=90°,利用SAS證明ABE≌△BCF,根據全等三角形的性質證明結論;

②根據全等三角形的性質得到∠BAE=CBF,根據垂直的定義證明;

2)根據折疊的性質得到∠C′BF=CBF,∠BC′F=BCF=90°,證明HB=HF,根據勾股定理列式計算即可.

1)①證明:∵四邊形ABCD是正方形,

BABC,∠ABC=∠BCD90°,

ABEBCF中,

,

∴△ABE≌△BCFSAS),

AEBF;

②解:AEBF,

理由如下:∵△ABE≌△BCF,

∴∠BAE=∠CBF

∵∠ABE90°,

∴∠BAE+AEB90°

∴∠CBF+AEB90°,即AEBF;

2)解:∵BCAB3,EC2BE,

EC2,BE1

CFCF1,

由折疊的性質可知,∠CBF=∠CBF,∠BCF=∠BCF90°,

∵∠CFB+CBF90°,∠HBF+FBC90°,

∴∠CFB=∠HBF,

HBHF,

HCHFCFHBCF3+AH12+AH,

RtHBC中,HB2CB2+CH2,即(3+AH232+2+AH2,

解得,AH2

BHAH+AB5

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知在RtABC中,∠ABC90°,點OAB邊上一點,以O為圓心OB為半徑的⊙O與邊AB相交于點E,與AC邊相切于D點,連接OC交⊙O于點F

1)連接DE,求證:OCDE;

2)若⊙O的半徑為3

①連接DF,若四邊形OEDF為菱形,弧BD的長為_____(結果保留π

②若AE2,則AD的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A是拋物線yax2+bx+c的頂點,點B02)是拋物線與y軸的交點,直線BC平行于x軸,交拋物線于點C,Dx軸上任意一點,若SABC3,SBCD2,則點A的坐標為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AD是等腰三角形ABC底邊BC上的高,AD1,DC,將△ADC繞著點D旋轉,得△DEF,點A、C分別與點EF對應,當EF與直線AB重合時,設ACDF相交于點O,那么由線段OC、OF和弧CF圍成的陰影部分的面積為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)(問題發現)

如圖1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE90°,延長CA到點F,使得AFAC,連接DF、BE,則線段BEDF的數量關系為   ,位置關系為   ;

2)(拓展研究)

將△ADE繞點A旋轉,(1)中的結論有無變化?僅就圖(2)的情形給出證明;

3)(解決問題)

AB2,AD,△ADE旋轉得到D,E,F三點共線時,直接寫出線段DF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10的網格中,點A、BC均在網格線的交點上,

1)畫出△ABC關于直線l對稱的△A′B′C′;

2)畫出△ABC繞點O逆時針旋轉90°后的△A1B1C1;

3)在(2)的條件下,求線段BC掃過的面積(結果保留π).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在矩形ABCD中,動點M從點A出發,沿ABC方向運動,當點M到達點C時停止運動,過點MMNAMCD于點N,設點M的運動路程為x,CNy,圖2表示的是yx的函數關系的大致圖象,則矩形ABCD的面積是( 。

A.20B.18C.10D.9

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知在矩形ABCD中,AD8,CD4,點E從點D出發,沿線段DA以每秒1個單位長的速度向點A方向移動,同時點F從點C出發,沿射線CD方向以每秒2個單位長的速度移動,當B,E,F三點共線時,兩點同時停止運動.設點E移動的時間為t(秒).

1)求當t為何值時,兩點同時停止運動;

2)設四邊形BCFE的面積為S,求St之間的函數關系式,并寫出t的取值范圍;

3)求當t為何值時,以E,F,C三點為頂點的三角形是等腰三角形;

4)求當t為何值時,∠BEC=∠BFC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解某中學九年級學生中考體育成績情況,現從中抽取部分學生的體育成績進行分段(A50分、B4940分、C3930分、D290)統計,統計結果如圖1、圖2所示.

根據上面提供的信息,回答下列問題:

1)本次抽查了 名學生的體育成績;

2)補全圖1,求圖2D分數段所占的圓心角是 度;

3)已知該校九年級共有900名學生,請估計該校九年級學生體育成績達到40分以上(40)的人數為 人.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视