【題目】如圖,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,點P從點A開始沿AB邊向點B以1 cm/s的速度移動,同時點Q從點B開始沿BC向點C以2cm/s的速度移動.當一個點到達終點時另一點也隨之停止運動,運動時間為x秒(x>0).
(1)求幾秒后,PQ的長度等于5 cm.
(2)運動過程中,△PQB的面積能否等于8 cm2?并說明理由.
【答案】(1)2秒后PQ的長度等于5 cm;(2)△PQB的面積不能等于8 cm2.
【解析】
(1)根據PQ=5,利用勾股定理BP2+BQ2=PQ2,求出即可;
(2)通過判定得到的方程的根的判別式即可判定能否達到8cm2.
解:(1)根據題意,得BP=(5-x),BQ=2x.
當PQ=5時,在Rt△PBQ中,BP2+BQ2=PQ2,
∴(5-x)2+(2x)2=52,
5x2-10x=0,
5x(x-2)=0,
x1=0(舍去),x2=2,
答:2秒后PQ的長度等于5 cm.
(2)設經過x秒以后,△PBQ面積為8,
×(5-x)×2x=8.
整理得x2-5x+8=0,
Δ=25-32=-7<0,
∴△PQB的面積不能等于8 cm2.
科目:初中數學 來源: 題型:
【題目】石獅泰禾某童裝專賣店在銷售中發現,一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節,商店決定采取適當的降價措施,以擴大銷售量,增加利潤,經市場調查發現,如果每件童裝降價1元,那么平均可多售出2件.
(1)設每件童裝降價x元時,每天可銷售______ 件,每件盈利______ 元;(用x的代數式表示)
(2)每件童裝降價多少元時,平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形中,
,
,動點P以
的速度從A點出發,沿
向C點移動,同時動點Q以
的速度從點C出發,沿
向點B移動,設P、Q兩點移動的時間為t秒
.
(1)t為多少時,以P、Q、C為頂點的三角形與相似?
(2)在P、Q兩點移動過程中,四邊形與
的面積能否相等?若能,求出此時t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.
(1)求證:DB平分∠ADC;
(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是某同學在一次數學測驗中解答的填空題,其中答對的是( )
A.若,則x=2B.若
的一個根是1,則k=2
C.若,則x=2D.若
的值為0,則x=1或2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形中,
,
,
,
是
的中點,將
繞點
旋轉,當
(即
)與
交于一點
,
(
)同時與
交于一點
時,點
,
和點
構成
,在此過程中,
周長的最小值是__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線與雙曲線
(
)交于
,
兩點,且點
的橫坐標為6.
(1)求的值;
(2)若雙曲線(
)上一點
的縱坐標為9,求
的面積;
(3)過原點的另一條直線
交雙曲線
(
)于
,
兩點(
點在第一象限),若由點
,
,
,
為頂點組成的四邊形面積為96,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=(x+2)2+m與x軸交于A,B兩點,與y軸交于點C.點D在拋物線上,且與點C關于拋物線的對稱軸對稱,拋物線的頂點為M,點B的坐標為(﹣1,0).
(1)求拋物線的解析式及A,C,D的坐標;
(2)判斷△ABM的形狀,并證明你的結論;
(3)若點P是直線BD上一個動點,是否存在以P,C,D為頂點的三角形與△ABD相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com