【題目】如圖,點 D,E 在△ABC的邊 BC上,連接AD,AE.下面有三個等式:①AB=AC;②AD=AE;③BD=CE.以此三個等式中的兩個作為命題的題設,另一個作為命題的結論,相構成以下三個命題:命題Ⅰ“如果①② 成立,那么③成立”; 命題Ⅱ“如果①③成立,那么②成立”;命題Ⅲ“如果②③成立,那么①成立”.
(1)以上三個命題是真命題的為__________(直接作答);
(2)請選擇一個真命題進行證明(先寫出所選命題,然后證明).
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,D在邊AC上,且
.
如圖1,填空
______
,
______
如圖2,若M為線段AC上的點,過M作直線
于H,分別交直線AB、BC與點N、E.
求證:
是等腰三角形;
試寫出線段AN、CE、CD之間的數量關系,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),已知拋物線y=ax2+bx﹣3的對稱軸為x=1,與x軸分別交于A、B兩點,與y軸交于點C,一次函數y=x+1經過A,且與y軸交于點D.
(1)求該拋物線的解析式.
(2)如圖(2),點P為拋物線B、C兩點間部分上的任意一點(不含B,C兩點),設點P的橫坐標為t,設四邊形DCPB的面積為S,求出S與t的函數關系式,并確定t為何值時,S取最大值?最大值是多少?
(3)如圖(3),將△ODB沿直線y=x+1平移得到△O′D′B′,設O′B′與拋物線交于點E,連接ED′,若ED′恰好將△O′D′B′的面積分為1:2兩部分,請直接寫出此時平移的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對角線長分別為6和8的菱形ABCD如圖所示,點O為對角線的交點,過點O折疊菱形,使B,B′兩點重合,MN是折痕.若B'M=1,則CN的長為____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學課上,張老師舉了下面的例題:
例1 等腰三角形中,
,求
的度數.(答案:
)
例2 等腰三角形中,
,求
的度數.(答案:
或
或
)
張老師啟發同學們進行變式,小敏編了如下一題:
變式 等腰三角形中,
,求
的度數.
(1)請你解答以上的變式題.
(2)解(1)后,小敏發現,的度數不同,得到
的度數的個數也可能不同.如果在等腰三角形
中,設
,當
有三個不同的度數時,請你探索
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD= ,CD=
,點P在四邊形ABCD上,若P到BD的距離為
,則點P的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,三角形 ABC 中,∠A 的平分線交 BC 于點 D,過點 D 作 DE⊥AC, DF⊥AB,垂足分別為 E,F,下面四個結論:
①∠AFE=∠AEF;②AD 垂直平分 EF;③;④EF 一定平行 BC. 其中正確的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 已知Rt△ABC中,AC=BC,∠C=90°,D為AB邊的中點,∠EDF=90°,∠EDF繞D點旋轉,它的兩邊分別交AC、CB(或它們的延長線)于E、F.當∠EDF繞D點旋轉到DE⊥AC于E時(如圖1),易證.當∠EDF繞D點旋轉到DE和AC不垂直時,在圖2和圖3這兩種情況下,上述結論是否成立? 若成立,請給予證明;若不成立,
,
,
又有怎樣的數量關系?請寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,點C在線段AB上,點M、N分別是AC、BC的中點.
(1)若AC = 8,CB = 6,求線段MN的長;
(2)若AC = a,MN = b,求線段BC的長用含,
的代數式可以表示.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com