【題目】如圖,已知點A(3,0),以A為圓心作⊙A與Y軸切于原點,與x軸的另一個交點為B,過B作⊙A的切線l.
(1)以直線l為對稱軸的拋物線過點A及點C(0,9),求此拋物線的解析式;
(2)拋物線與x軸的另一個交點為D,過D作⊙A的切線DE,E為切點,求此切線長;
(3)點F是切線DE上的一個動點,當△BFD與△EAD相似時,求出BF的長.
【答案】(1)
(2)
(3)BF的長為或
.
【解析】
試題分析:(1)已知了拋物線的頂點坐標,可將拋物線的解析式設為頂點坐標式,然后將C點坐標代入求解即可.
(2)由于DE是⊙A的切線,連接AE,那么根據切線的性質知AE⊥DE,在Rt△AED中,AE、AB是圓的半徑,即AE=OA=AB=3,而A、D關于拋物線的對稱軸對稱,即AB=BD=3,由此可得到AD的長,進而可利用勾股定理求得切線DE的長.
(3)若△BFD與EAD△相似,則有兩種情況需要考慮:①△AED∽△BFD,②△AED∽△FBD,根據不同的相似三角形所得不同的比例線段即可求得BF的長.
試題解析:(1)設拋物線的解析式為y=a(x﹣6)2+k;
∵拋物線經過點A(3,0)和C(0,9),
∴,
解得:,
∴.
(2)連接AE;
∵DE是⊙A的切線,
∴∠AED=90°,AE=3,
∵直線l是拋物線的對稱軸,點A,D是拋物線與x軸的交點,
∴AB=BD=3,
∴AD=6;
在Rt△ADE中,DE2=AD2﹣AE2=62﹣32=27,
∴.
(3)當BF⊥ED時;
∵∠AED=∠BFD=90°,∠ADE=∠BDF,
∴△AED∽△BFD,
∴,
即,
∴;
當FB⊥AD時,
∵∠AED=∠FBD=90°,∠ADE=∠FDB,
∴△AED∽△FBD,
∴,
即;
∴BF的長為或
.
科目:初中數學 來源: 題型:
【題目】我們用有理數的運算研究下面問題.規定:水位上升為正,水位下降為負;幾天后為正,幾天前為負.如果水位每天下降4cm,那么3天后的水位變化用算式表示正確的是( 。
A. (+4)×(+3) B. (+4)×(﹣3) C. (﹣4)×(+3) D. (﹣4)×(﹣3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知反比例函數y=(m為常數)的圖象在一、三象限.
(1)求m的取值范圍;
(2)如圖,若該反比例函數的圖象經過ABOD的頂點D,點A、B的坐標分別為(0,3),(﹣2,0).
①求出函數解析式;
②設點P是該反比例函數圖象上的一點,若OD=OP,則P點的坐標為 ;若以D、O、P為頂點的三角形是等腰三角形,則滿足條件的點P的個數為 個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】AD是△ABC的角平分線且交BC于D,過點D作DE⊥AB于E,DF⊥AC于F,則下列結論不一定正確的是( )
A.DE=DF B.BD =CD C.AE=AF D.∠ADE=∠ADF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC繞著點C旋轉,使點B與AB邊上的點D重合,點A落在點E,則點A、E之間的距離為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,D是斜邊AB上的中點,E是邊BC上的點,AE與CD交于點F,且AC2=CECB.
(1)求證:AE⊥CD;
(2)連接BF,如果點E是BC中點,求證:∠EBF=∠EAB.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com