【題目】已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,則∠MOD的度數是_____________________度
【答案】30或50
【解析】
本題分兩種情況討論:
(1)當C、B兩點位于OA邊的同一側時;
(2)當當C、B兩點位于OA邊的兩側時.
根據兩種情況,同時考慮角平分線的定義,得出結論即可.
分為兩種情況:
如下圖,當∠AOB在∠AOC內部時,
∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=∠AOB=10°,∠AOM=∠COM=
∠AOC=40°,∴∠DOM=∠AOM-∠AOD=40°-10°=30°.
如下圖,當∠AOB在∠AOC外部時,
∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=∠AOB=10°,∠AOM=∠COM=
∠AOC=40°,∴∠DOM=∠AOM+∠AOD=40°+10°=50°.
科目:初中數學 來源: 題型:
【題目】將正整數按如圖所示的規律排列下去,若用有序數對(m,n)表示從上到下第m排,從左到右第n個數,如(4,2)表示整數8.則(62,55)表示的數是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算
(1)12﹣(﹣18)+(﹣7).
(2)3+(﹣2
)+5
+(﹣8
).
(3)(﹣)×(﹣
)+(﹣
)×(
).
(4)(﹣)×(﹣1
)÷(﹣2
).
(5)42×(﹣)+(﹣
)÷(﹣0.25).
(6)(﹣1)10×3+(﹣2)3÷4﹣145×0.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線分別與x軸和y軸交于點A和點B.P是線段AB上一動點(不與A、B重合),過點P分別作PC⊥y軸于點C,PD⊥x軸于點D.設點P的橫坐標為m.
(1)如圖1,求線段AB的長度;
(2)如圖2,當時,求點P的坐標;
(3)如圖3,作直線OP,若直線OP的解析式為,求四邊形OCPD的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風情線是蘭州最美的景觀之一.數學課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離(結果精確到1米,參考數據:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某大型物件快遞公司送貨員每月的工資由底薪加計件工資兩部分組成,計件工資與送貨件數成正比例.有甲乙兩名送貨員,如果送貨量為x件時,甲的工資是y1(元),乙的工資是y2(元),如圖所示,已知甲的每月底薪是800元,每送一件貨物,甲所得的工資比乙高2元
(1)根據圖中信息,分別求出y1和y2關于x的函數解析式;(不必寫定義域)
(2)如果甲、乙兩人平均每天送貨量分別是12件和14件,求兩人的月工資分別是多少元?(一個月為30天)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,對角線AC、BD相交于點O,過點O作EF⊥AC分別交射線AD與射線CB于點E和點F,聯結CE、AF.
(1)求證:四邊形AFCE是菱形;
(2)當點E、F分別在邊AD和BC上時,如果設AD=x,菱形AFCE的面積是y,求y關于x的函數關系式,并寫出x的取值范圍;
(3)如果△ODE是等腰三角形,求AD的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:
(1)當有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待70位顧客共同就餐,但餐廳只有18張這樣的餐桌,若你是這個餐廳的經理,你打算選擇哪種方式來擺放餐桌,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖正比例函數y=2x的圖像與一次函數 的圖像交于點A(m,2),一次函數的圖象經過點B(-2,-1)與y軸交點為C與x軸交點為D.
(1)求一次函數的解析式;
(2)求的面積。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com