【題目】已知:如圖(a),□ABCD的對角線AC、BD相交于點O , EF過點O與AB、CD分別相交于點E、F . 求證:OE=OF , AE=CF , BE=DF . 若上圖中的條件都不變,將EF轉動到圖b的位置,那么上述結論是否成立?若將EF向兩方延長與平行四邊形的兩對邊的延長線分別相交(圖c和圖d),結論是否成立,說明你的理由.
【答案】解答:(a)證明:在□ABCD中,AB∥CD ,
∴ ∠1=∠2.∠3=∠4.
又 OA=OC(平行四邊形的對角線互相平分),
∴ △AOE≌△COF(ASA).
∴ OE=OF , AE=CF(全等三角形對應邊相等).
∵ □ABCD , ∴ AB=CD(平行四邊形對邊相等).
∴ AB—AE=CD—CF . 即 BE=FD .
(b) (c) (d)過程參照(a)
【解析】這是一道探究發現題型。(a)圖的證明利用平行四邊形的性質得三角形全等既可,(b)(c)(d)證明可參照(a)的證明,照貓畫虎.
【考點精析】本題主要考查了平行四邊形的性質的相關知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,□ABCD中,對角線AC和BD相交于點O , 若AC=8,AB=6,BD=m , 那么m的取范圍是( ).
A.2<m<10
B.2<m<14
C.6<m<8
D.4<m<20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題滿分8分)如圖,□ABCD中,BD是它的一條對角線,過A、C兩點作AE⊥BD,CF⊥BD,垂足分別為E、F,延長AE、CF分別交CD、AB于M、N。
(1)(4分)求證:四邊形CMAN是平行四邊形。
(2)(4分)已知DE=4,FN=3,求BN的長。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com