【題目】如圖,△ABE為等腰直角三角形,∠ABE=90°,BC=BD,∠FAD=30°.
(1)求證:△ABC≌△EBD;
(2)求∠AFE的度數.
【答案】(1)見解析;(2)90°
【解析】
試題分析:(1)根據等腰直角三角形的性質得到AB=BE,根據鄰補角的定義得到∠ABE=∠DBE=90°,根據全等三角形的判定定理即可得到結論;
(2)根據全等三角形的性質得到∠BAC=∠BED,根據三角形的內角和得到∠BED+∠D=90°,等量代換得到∠BAC+∠D=90°,即可得到結論.
(1)證明:∵△ABE為等腰直角三角形,
∴AB=BE,
∵∠ABE=90°,
∴∠ABE=∠DBE=90°,
在△ABC與△BDE中,,
∴△ABC≌△EBD;
(2)解:∵△ABC≌△EBD,
∴∠BAC=∠BED,
∵∠BED+∠D=90°,
∴∠BAC+∠D=90°,
∴∠AFD=90°,
∴∠AFE=90°.
科目:初中數學 來源: 題型:
【題目】如圖,OA⊥OB,引射線OC(點C在∠AOB外),OD平分∠BOC,OE平分∠AOD.
(1)若∠BOC=40°,請依題意補全圖,并求∠BOE的度數;
(2)若∠BOC=α(0°<α<180°),請直接寫出∠BOE的度數(用含α的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABD和△ACE分別是等邊三角形,AB≠AC,下列結論中正確有( 。﹤.(1)DC=BE,(2)∠BOD=60°,(3)∠BDO=∠CEO,(4)AO平分∠DOE,(5)AO平分∠BAC.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知線段AC為⊙O的直徑,PA為⊙O的切線,切點為A,B為⊙O上一點,且BC∥PO.
(1)求證:PB為⊙O的切線;
(2)若⊙O的半徑為1,PA=3,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC周長為1,連接△ABC三邊中點構成第二個三角形,再連接第二個三角形三邊中點構成第三個三角形,以此類推,第2 016個三角形的周長為( )
A. 22 016 B. 22 017 C. ()2 016 D. (
)2 015
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國明代著名數學家程大位的《算法統宗》一書中記載了一些詩歌形式的算題,其中有一個“百羊問題”:甲趕群羊逐草茂,乙拽肥羊一只隨其后;戲問甲及一百否?甲云所說無差謬,若得這般一群湊,再添半群小半群,得你一只來方湊.玄機奧妙誰猜透.題目的意思是:甲趕了一群羊在草地上往前走,乙牽了一只肥羊緊跟在甲的后面.乙問甲:“你這群羊有一百只嗎?”甲說:“如果再有這么一群,再加半群,又加四分之一群,再把你的一只湊進來,才滿100只.”請問甲原來趕的羊一共有多少只?如果設甲原來趕的羊一共有只,那么可列方程為______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與函數y= (x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=
OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,BD是矩形ABCD的對角線,∠ABD=30°,AD=1.將△BCD沿射線BD方向平移到△B'C'D'的位置,使B'為BD中點,連接AB',C'D,AD',BC',如圖②.
(1)求證:四邊形AB'C'D是菱形;
(2)四邊形ABC'D′的周長為;
(3)將四邊形ABC'D'沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形,直接寫出所有可能拼成的矩形周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校八年級學生會為了解本年級600名學生的睡眠情況,將同學們某天的睡眠時長t(小時)分為A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五個選項,進行了一次問卷調查,隨機抽取n名同學的調查問卷并進行了整理,繪制成如下條形統計圖,根據統計圖提供的信息解答下列問題:
(1)求n的值;
(2)根據統計結果,估計該年級600名學生中睡眠時長不足7小時的人數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com