【題目】如圖,△ABD和△ACE分別是等邊三角形,AB≠AC,下列結論中正確有( 。﹤.(1)DC=BE,(2)∠BOD=60°,(3)∠BDO=∠CEO,(4)AO平分∠DOE,(5)AO平分∠BAC.
A. 2 B. 3 C. 4 D. 5
【答案】B
【解析】
根據等邊三角形的性質推出AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,求出∠DAC=∠BAE,根據SAS證△DAC≌△BAE,推出BE=DC,∠ADC=∠ABE,根據三角形的內角和定理求出∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=60°,根據等邊三角形性質得出∠ADB=∠AEC=60°,但∠ADC≠∠AEB,過點A分別作AM⊥BE,AN⊥DC,垂足為點M,N.根據三角形的面積公式求出AN=AM,根據角平分線性質求出即可,根據以上推出的結論即可得出答案.
解:∵△ABD與△AEC都是等邊三角形,
∴AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,
∴∠DAC=∠BAE,
在△DAC和△BAE中
∴△DAC≌△BAE(SAS),
∴BE=DC,∠ADC=∠ABE,
∵∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE
=180°﹣∠ODB﹣60°﹣∠ADC
=120°﹣(∠ODB+∠ADC)
=120°﹣60°=60°,
∴∠BOD=60°,∴①正確;②正確;
∵△ABD與△AEC都是等邊三角形,
∴∠ADB=∠AEC=60°,但根據已知不能推出∠ADC=∠AEB,
∴∠BDO=∠CEO錯誤,∴③錯誤;
如圖,過點A分別作AM⊥BE,AN⊥DC,垂足為點M,N.
∵由(1)知:△ABE≌△ADC,
∴S△ABE=S△ADC
∴
∴AM=AN,
∴點A在∠DOE的平分線上,
即OA平分∠DOE,故④正確,⑤錯誤;
故選:B.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F,若AF=6,則四邊形AEDF的周長是( 。
A. 24 B. 28 C. 32 D. 36
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠ABC=∠DCB,添加一個條件使△ABC≌△DCB,下列添加的條件不能使△ABC≌△DCB的是( 。
A. ∠A=∠D B. AB=DC C. AC=DB D. OB=OC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)在圖中作出△ABC關于直線m對稱的△A′B′C′,并寫出A′、B′、C′三點的坐標(2)猜想:坐標平面內任意點P(x,y)關于直線m對稱點P′的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【操作發現】
如圖①,在邊長為1個單位長度的小正方形組成的網格中,△ABC的三個頂點均在格點上.
(1)請按要求畫圖:將△ABC繞點A按順時針方向旋轉90°,點B的對應點為B′,點C的對應點為C′,連接BB′;
(2)在(1)所畫圖形中,∠AB′B= .
(3)【問題解決】
如圖②,在等邊三角形ABC中,AC=7,點P在△ABC內,且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學通過觀察、分析、思考,對上述問題形成了如下想法:
想法一:將△APC繞點A按順時針方向旋轉60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數量關系;
想法二:將△APB繞點A按逆時針方向旋轉60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數量關系.
…
請參考小明同學的想法,完成該問題的解答過程.(一種方法即可)
(4)【靈活運用】
如圖③,在四邊形ABCD中,AE⊥BC,垂足為E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k為常數),求BD的長(用含k的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《函數的圖象與性質》拓展學習片段展示:
(1)【問題】如圖①,在平面直角坐標系中,拋物線y=a(x﹣2)2﹣ 經過原點O,與x軸的另一個交點為A,則a= .
(2)【操作】將圖①中拋物線在x軸下方的部分沿x軸折疊到x軸上方,將這部分圖象與原拋物線剩余部分的圖象組成的新圖象記為G,如圖②.直接寫出圖象G對應的函數解析式.
(3)【探究】在圖②中,過點B(0,1)作直線l平行于x軸,與圖象G的交點從左至右依次為點C,D,E,F,如圖③.求圖象G在直線l上方的部分對應的函數y隨x增大而增大時x的取值范圍.
(4)【應用】P是圖③中圖象G上一點,其橫坐標為m,連接PD,PE.直接寫出△PDE的面積不小于1時m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com