【題目】下列直線中,經過第一、二、三象限的是( )
A. 直線y= x-1 ; B. 直線y= -x+1; C. 直線y=x+1; D. 直線y=-x-1 .
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一點,且DE=CE,連接BD,CD.
(1)試判斷BD與AC的位置關系和數量關系,并說明理由;
(2)如圖2,若將△DCE繞點E旋轉一定的角度后,試判斷BD與AC的位置關系和數量關系是否發生變化,并說明理由;
(3)如圖3,若將(2)中的等腰直角三角形都換成等邊三角形,其他條件不變.
①試猜想BD與AC的數量關系,并說明理由;
②你能求出BD與AC的夾角度數嗎?如果能,請直接寫出夾角度數;如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將長方形紙片ABCD的角C沿著GF折疊(點F在BC上,不與B,C重合),使點C落在長方形內部點E處,若FH平分∠BFE,則∠GFH的度數( )
A.大于90°
B.小于90°
C.等于90°
D.隨折痕GF位置的變化而變化
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
(1)A,B間的距離是;
(2)若點C也是數軸上的點,C到B的距離是C到原點O的距離的3倍,求C對應的數;
(3)若當電子P從B點出發,以6個單位長度/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發,以4個單位長度/秒的速度向左運動,設兩只電子螞蟻在數軸上的D點相遇,那么D點對應的數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l與⊙O相離,OA⊥l于點A,OA=5,OA與⊙O相交于點P,AB與⊙O相切于點B, BP的延長線交直線l于點C.
(1)試判斷線段AB與AC的數量關系,并說明理由;
(2)若PC=,求⊙O的半徑和線段PB的長;
(3)若在⊙O上存在點Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)直線BF垂直于CE于點F,交CD于點G(如圖l),求證:AE=CG;
(2)直線AH垂直于CE,垂足為H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段(不需要添加輔助線),并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在方格紙中,三角形ABC的三個頂點和點P都在小方格的頂點上.
(1)請在圖1中,畫出將三角形ABC繞點C旋轉后的三角形A1B1C,使得點P落在三角形A1B1C內部,且三角形A1B1C的頂點也都落在方格的頂點上.
(2)寫出旋轉角的度數 .
(3)拓展延伸:如圖2,將直角三角形ABC(其中∠C=90°)繞點A按順時針方向選擇115°得到△AB1C1 , 使得點C,A,B1在同一條直線上,那么∠BAC1等于 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A、B兩站間的路程為448千米,一列慢車從A站出發,每小時行駛60千米;一列快車從B站出發,每小時行駛80千米,問:
(1)兩車同時開出,相向而行,出發后多少小時相遇?
(2)兩車相向而行,慢車先開出28分鐘,快車開出后多少小時兩車相遇?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com