【題目】如圖,在平面直角坐標系xoy中,已知拋物線經過點A(0,4),B(1,0),C(5,0),拋物線對稱軸l與x軸相交于點M.
(1)求拋物線的解析式和對稱軸;
(2)點P在拋物線上,且以A、O、M、P為頂點的四邊形四條邊的長度為四個連續的正整數,請你直接寫出點P的坐標;
(3)連接AC.探索:在直線AC下方的拋物線上是否存在一點N,使△NAC的面積最大?若存在,請你求出點N的坐標;若不存在,請你說明理由.
【答案】
(1)
解:根據已知條件可設拋物線的解析式為y=a(x﹣1)(x﹣5),
把點A(0,4)代入上式得:a= ,
∴y= (x﹣1)(x﹣5)=
x2﹣
x+4=
(x﹣3)2﹣
,
∴拋物線的對稱軸是:x=3
(2)
解:P點坐標為:(6,4),
由題意可知以A、O、M、P為頂點的四邊形有兩條邊AO=4、OM=3,
又∵點P的坐標中x>5,
∴MP>2,AP>2;
∴以1、2、3、4為邊或以2、3、4、5為邊都不符合題意,
∴四條邊的長只能是3、4、5、6的一種情況,
在Rt△AOM中,AM= =
=5,
∵拋物線對稱軸過點M,
∴在拋物線x>5的圖象上有關于點A的對稱點與M的距離為5,
即PM=5,此時點P橫坐標為6,即AP=6;
故以A、O、M、P為頂點的四邊形的四條邊長度分別是四個連續的正整數3、4、5、6成立,
即P(6,4)
(3)
解:在直線AC的下方的拋物線上存在點N,使△NAC面積最大.
設N點的橫坐標為t,此時點N(t, t2﹣
t+4)(0<t<5),
過點N作NG∥y軸交AC于G;作AM⊥NG于M,
由點A(0,4)和點C(5,0)可求出直線AC的解析式為:y=﹣ x+4;
把x=t代入得:y=﹣ t+4,則G(t,﹣
t+4),
此時:NG=﹣ x+4﹣(
t2﹣
t+4)=﹣
t2+4t,
∵AM+CF=CO,
∴S△ACN=S△ANG+S△CGN= AM×NG+
NG×CF=
NGOC=
(﹣
t2+4t)×5=﹣2t2+10t=﹣2(t﹣
)2+
,
∴當t= 時,△CAN面積的最大值為
,
由t= ,得:y=
t2﹣
t+4=﹣3,
∴N( ,﹣3).
【解析】(1)拋物線經過點A(0,4),B(1,0),C(5,0),可利用兩點式法設拋物線的解析式為y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函數的解析式,則可求得拋物線的對稱軸;(2)由已知,可求得P(6,4),由題意可知以A、O、M、P為頂點的四邊形有兩條邊AO=4、OM=3,又知點P的坐標中x>5,所以MP>2,AP>2;因此以1、2、3、4為邊或以2、3、4、5為邊都不符合題意,所以四條邊的長只能是3、4、5、6的一種情況,則分析求解即可求得答案;(3)在直線AC的下方的拋物線上存在點N,使△NAC面積最大.設N點的橫坐標為t,此時點N(t, t2﹣
t+4)(0<t<5),再求得直線AC的解析式,即可求得NG的長與△ACN的面積,由二次函數最大值的問題即可求得答案.
【考點精析】根據題目的已知條件,利用二次函數的性質的相關知識可以得到問題的答案,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD置于平面直角坐標系中,其中AD邊在x軸上,AB=2,直線MN:y=x﹣4沿x軸的負方向以每秒1個單位的長度平移,設在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時間為t,m與t的函數圖象如圖2所示.
(1)點A的坐標為 , 矩形ABCD的面積為;
(2)求a,b的值;
(3)在平移過程中,求直線MN掃過矩形ABCD的面積S與t的函數關系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知在⊙O中,點C為劣弧AB上的中點,連接AC并延長至D,使CD=CA,連接DB并延長DB交⊙O于點E,連接AE.
(1)求證:AE是⊙O的直徑;
(2)如圖2,連接EC,⊙O半徑為5,AC的長為4,求陰影部分的面積之和.(結果保留π與根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】畫圖題:
(1)如圖,將△ABC繞點O順時針旋轉180°后得到△A1B1C1 . 請你畫出旋轉后的△A1B1C1;
(2)請你畫出下面“蒙古包”的左視圖.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(8,0),點P(0,m),將線段PA繞著點P逆時針旋轉90°,得到線段PB,連接AB,OB,則BO+BA的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的半徑OD垂直于弦AB,垂足為點C,連接AO并延長交⊙O于點E,連接BE,CE.若AB=8,CD=2,則△BCE的面積為( )
A.12
B.15
C.16
D.18
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為測量平地上一塊不規則區域(圖中的陰影部分)的面積,畫一個邊長為2cm的正方形,使不規則區域落在正方形內,現向正方形內隨機投擲小石子(假設小石子落在正方形內每一點都是等可能的),經過大量重復投擲試驗,發現小石子落在不規則區域的頻率穩定在常數0.25附近,由此可估計不規則區域的面積是m2 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,過點(﹣2,3)的直線l經過一、二、三象限,若點(0,a),(﹣1,b),(c,﹣1)都在直線l上,則下列判斷正確的是( )
A.a<b
B.a<3
C.b<3
D.c<﹣2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com