【題目】問題情境:如圖1,直角三角板ABC中,∠C=90°,AC=BC,將一個用足夠長的的細鐵絲制作的直角的頂點D放在直角三角板ABC的斜邊AB上,再將該直角繞點D旋轉,并使其兩邊分別與三角板的AC邊、BC邊交于P、Q兩點.
問題探究:(1)在旋轉過程中,
①如圖2,當AD=BD時,線段DP、DQ有何數量關系?并說明理由.
②如圖3,當AD=2BD時,線段DP、DQ有何數量關系?并說明理由.
③根據你對①、②的探究結果,試寫出當AD=nBD時,DP、DQ滿足的數量關系為_______________(直接寫出結論,不必證明)
(2)當AD=BD時,若AB=20,連接PQ,設△DPQ的面積為S,在旋轉過程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,請說明理由.
圖1 圖2 圖3
【答案】(1)① DP=DQ,理由見解析; ②DP=2DQ,理由見解析; ③DP=nDQ;(2)S有最小值為25; S有最大值為10,理由見解析.
【解析】
(1)①首先利用等腰直角三角形的性質得出△ADP≌△CDQ(ASA),即可得出答案;
②首先得出△DPM∽△DQN,則,求出△AMD∽△BND,進而得出答案.
③根據已知得出Rt△DNP∽Rt△DMQ,則,則AD=nBD,求出即可;
(2)當DP⊥AC時,x最小,最小值是5.此時,S有最小值;當點P與點A重合時,x最大,最大值為10,分別求出即可.
解:(1)①DP=DQ
理由:連接CD,
∵AD=BD,△ABC是等腰直角三角形,
∴AD=CD,∠A=∠DCQ,∠ADC=90°,∴∠ADP+∠PDC=∠CDQ+∠PDC=90°,
∴∠ADP=∠CDQ,∴△ADP≌△CDQ,∴DP=DQ.
② DP=" 2DQ" .
理由:如圖,過點D作DM⊥AC、DN⊥BC,垂足分別為M、N,
∴∠DMP=∠DNQ=90°,∠MDP=∠NDQ,
∴△DPM∽△DQN,∴DM:DN="DP:DQ" .
∵∠AMD=∠DNB=90°,∠A=∠B,
∴△AMD∽△BND,∴AD:BD=DM:DN.
∴DP:DQ=AD:BD=2BD:BD=2:1,
∴DP=2DQ.
③DP=NQ.
(2)存在,設DQ=x,由(1)①知DP=x,
∴S=
,
當DP⊥AC時,x最小,最小值是,此時,S有最小值,
當點P與點A重合時,x最大,最大值是10,此時,S有最大值,
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程ax2+bx+1=0中,b=;
(1)若a=4,求b的值;
(2)若方程ax2+bx+1=0有兩個相等的實數根,求方程的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O.
(1)畫出△AOB平移后的三角形,其平移后的方向為射線AD的方向,平移的距離為AD的長.
(2)觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程ax2+bx+1=0中,b=;
(1)若a=4,求b的值;
(2)若方程ax2+bx+1=0有兩個相等的實數根,求方程的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,直徑
垂直于不過圓心
的弦
,垂足為點
,連接
,
,點
在
上,且
.過點
作
的切線交
的延長線于點
,點
為
上一動點,設線段
的長為
.
(1)求證:;
(2)求證:;
(3)設半徑為
,若點
為
中點,求
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明大學畢業回家鄉創業,第一期培植盆景與花卉各50盆售后統計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是19元,調研發現:
①盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元;②花卉的平均每盆利潤始終不變.
小明計劃第二期培植盆景與花卉共100盆,設培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤分別為W1,W2(單位:元)
(1)用含x的代數式分別表示W1,W2;
(2)當x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD繞點A逆時針旋轉45度后得到正方形AB′C′D′,邊B′C′與DC交于點O,則四邊形AB′OD的周長是( 。
A.B.6C.
D.2+
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖平面直角坐標系中,矩形的頂點
的坐標為
,
、
分別落在
軸和
軸上,
是矩形的對角線. 將
繞點
逆時針旋轉,使點
落在
軸上,得到
,
與
相交于點
,反比例函數
的圖象經過點
,交
于點
.
(1)求的值和點
的坐標;
(2)連接,則圖中是否存在與
相似的三角形?若存在,請把它們一一找出來,并選其中一種進行證明;若不存在,請說明理由;
(3)在線段上存在這樣的點
,使得
是等腰三角形,請直接寫出點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】墊球是排球隊常規訓練的重要項目之一.下列圖表中的數據是甲、乙、丙三人每人十次墊球測試的成績.測試規則為連續接球10個,每墊球到位1個記1分.
運動員甲測試成績表
測試序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)寫出運動員甲測試成績的眾數和中位數;
(2)在他們三人中選擇一位墊球成績優秀且較為穩定的接球能手作為自由人,你認為選誰更合適?為什么?(參考數據:三人成績的方差分別為、
、
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com